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Webinar aims

® To provide participants with an overview of one of the three kinds of modelling with
spatial data, namely areal or lattice data modelling

® |t will become clear that these kinds of data may be characterised by spatial
autocorrelation

® On the one hand, information leaking between neighbouring spatial entities - spillover -
needs to be taken into account

® On the other, we will see that looking carefully at spatial entities - observational units
often not designed by the analyst, and understanding that such spillovers can occur, may
lead us to clearer analysis



Webinar learning outcomes

® Being able to place spatial econometrics in a broader context of modelling with spatial
data

® Knowing the most common models proposed by spatial econometrics
® Knowing which R packages provide these models

® Understanding the concepts of support, spatial autocorrelation, and how they may interact
when modelling with spatial data



Webinar contents

® Contents build on chapters 14-17 of Pebesma and Bivand (2023), also at
https:/ /r-spatial.org/book

® What is spatial econometrics? How does it relate to econometrics and to other fields
modelling with spatial data?

® Which estimation methods are used in spatial econometrics, which are specific to spatial
econometrics, and which shared with proximate fields?

® How are spatial (and spatio-temporal) data represented in R packages, and which
packages provide implementations of relevant estimation methods?

® Boston housing value data set: a case of trying to study a problem when the support of
the data probably does not match the problem


https://r-spatial.org/book

Spatial econometrics



Spatial econometrics

® Anselin (2010) indicates clearly and repeatedly (Anselin 1988) that we should acknowledge
Spatial Econometrics by Paelinck and Klaassen (1979) of the Netherlands Economic
Institute as our starting point (see also Hordijk (1974) and Hordijk and Paelinck (1976))

® In a short commentary, Paelinck (2013) recalls his conviction, expressed in 1967, that “early
econometric exercises ... relating only variables possessing the same regional index ...
were inadequate to represent the correct spatial workings of the economy, which would
then be reflected in the policy outcomes.”

® Central government expenditure in region ¢ could spill over into income and consumption

in other regions, through labour market and interregional trade channels



Statistical maps

® Pre-dating spatial econometrics, two statisticians, Moran (1948) and Geary (1954), had
proposed measures that began to address the need to infer from maps

® Geary's measure was followed up by Duncan, Cuzzort, and Duncan (1961) in Statistical
geography: Problems in analyzing areal data, where they point to issues raised by the
modifiable nature of spatial units used for collecting and analysing information
(modifiable areal unit problem, MAUP)

® “Sooner or later in a study of areal variation the investigator runs up against the fact that
areal units situated close to each other are more likely to be similar in their characteristics

than are areal units which are some distance apart ...” (pp. 128-9)

® and heterogeneity — for example upper level units “breaking up” the smooth surface of

lower level units



Spatial autocorrelation

® A D.Cliff and Ord (1969) generalised the way in which neighbours could be defined as a
spatial weights matrix (see Ch. 14), and in Spatial Autocorrelation (A. D. Cliff and Ord 1973)
set out the framework for global measures of spatial autocorrelation

® 0rd (2010) reflects on their legacy, expressing doubt that the serious points raised by
Granger (1969) (and noted by Ripley (1988)) have been addressed adequately

® Another early summary (Hepple (1974)) shows how much had already been grasped,
including the impact of spatial autocorrelation on multivariate analysis

® Finally, Tobler (1970) proposed a “first law” of geography, immediately criticised by Olsson
(1970) for over-reaching (see Ch. 15)


https://r-spatial.org/book/14-Areal.html
https://r-spatial.org/book/15-Measures.html#measures-and-process-mis-specification

Spatial autocorrelation in regression residuals

® Using the tools created to examine spatial autocorrelation, it became possible to extend to

regression residuals

® A Cliff and Ord (1972) provided an extension of Moran’s I to regression residuals, followed
by Hordijk (1974)

® |t was long felt that the omission of special (spatial) treatment for models using spatial

data invalidated inferences made

® In a careful study, Smith and Lee (2012) show that inferences are not affected only when

covariates are not spatially autocorrelated



Spatial econometrics or spatially structured random effects?

® From the mid 1970’s, two traditions developed, one handling the effects of spatial
autocorrelation in modelling in ways analogous to time series, the other adding spatially
structured random effects (in the statistical sense rather than panel econometrics sense)

to models

® The latter was proposed by Besag (1974), and has been widely adopted in spatial
epidemiology (disease mapping) and spatial ecology, as an effective way of including the

unobserved spatial process

® Both Besag (1974) and A. D. Cliff and Ord (1973) reach back to Whittle (1954), but the
subsequent developments of conditional autoregression models (CAR, spatially structured
random effects) and simultaneous (joint) autoregression models (SAR, spatial
econometrics), have diverged. Ord takes this up in his discussion of Besag (1974), page 229
(see also Ch. 16)


https://r-spatial.org/book/16-SpatialRegression.html#markov-random-field-and-multilevel-models

Models, models, models

We can represent a simple modelling situation in the following way:
data = smooth + rough

where the rough are taken to have no remaining patterning information. If, on the other hand,
useful information remains in the rough, for example with discernible spatial patterning, we
can try to retrieve it:

data = smooth + spatial smooth + rough

This is useful both for predictions from smooth + spatial smooth, and possibly less
biassed inference from the smooth.



Spatial smooth: spatially structured random effects

® The spatially structured random effects literature is very rich, and now expresses the
spatial smooth in the context of linear mixed models (LMM)

® This can be extended to generalised linear mixed models (GLMM) and to multi-level
models

® The spatial structuring is typically described as by a Markov Random Field (MRF) term
added to the model, either with a parametric or intrinsic conditional autoregressive form;
the MRF is expressed through a graph of 0/1 neighbours

® The output includes an estimate of the random effect for each observation — which may
be mapped, and an expression of the distribution around those estimates

"



Spatial smooth: spatial lag model

In spatial econometrics, the spatial smooth term is not as simple.

The spatial lag model (SLM, a.k.a SAR) is the most frequently encountered specification in
spatial econometrics:

Y = P, Wy + X3+,

where y is an (N x 1) vector of observations on a dependent variable taken at each of N
locations, W is a fixed (N x ) spatial weights matrix, X is an (N X k) matrix of exogenous
variables, B is an (k x 1) vector of parameters, € is an (N x 1) vector of independent and

identically distributed disturbances and p, . is a scalar spatial lag parameter.

The spatial smooth termis p; . Wy.



Spatial smooth: spatial Durbin model

In the spatial Durbin model (SDM), the spatially lagged exogenous variables are added to the
model; spatial Durbin models are reviewed by Mur and Angulo (2006):

Y = Pr WY + X8+ WXy +¢,

where yis an ((k — 1) x 1) vector of parameters where W is row-standardised (all rows sum

to unity), and a (k x 1) vector otherwise.

The spatial smooth termis p,, Wy + WX~



How to interpret regression coefficients

LeSage and Pace (2009) show that these models share a complicated data generation process:

y=(1I-— pLagW)*l(X,B + WX7y) +e.

in which Plog and (3 (and possibly ) interact. These measures of the effects of each included
covariate need to be estimated in addition to fitting the model
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Spatial smooth: spatial error model

The spatial error model (SEM) may be written as Ord (1975) or Hepple (1976):

y = X5+ u, u=p,. Wu+e,

and u is a spatially autocorrelated disturbance vector with constant variance o2 and covariance
terms specified:

u -~ N<07 02(1 - pErrW>71 (I - pErrWT>7l)



What to do about time?

Spatio-temporal models in the spatially structured random effects branch are just (G)LMM with
a added temporal random effect. Non-separability between time and space remains a problem,
but a lot can be achieved, see Blangiardo and Cameletti (2015) and Gomez-Rubio (2020)

In the spatial econometrics branch, Elhorst (2003) presents the extension of panel econometrics
to spatial panel data (see also Elhorst (2014)). A range of combined models has also come into
being, a general nested model (GNM) nesting all the others, a model without spatially lagged
covariates (SARAR). If neither the residuals nor the response are modelled with spatial
processes, spatially lagged covariates may be added to a linear model, as a spatially lagged X
model (SLX) (LeSage 2014; Halleck Vega and Elhorst 2015). We can write the GNM as (here a
cross-sectional model for simplicity):

Y = PLag Wy + X8+ WXy + u, u=pp, Wu-+e.



Which branch?

® The literature covering both the development and especially the use of spatially
structured random effects (SSRE) is vast, and they have few problems with limited
dependent variables

® The literature on the specification and development of spatial econometrics models
(including spatial panel models) is large, but usage is limited, not least because of the
need to choose between model specifications; only this branch may open for

instrumenting endogenous covariates

® Both use the same specifications defining neighbours of observations, but spatial
econometrics models most often use row standardised spatial weights, and SSRE most

often use binary spatial weights (and require symmetric weights in a single graph)



Estimation methods for spatial

econometrics



Estimation methods for spatial econometrics

® The estimation methods first introduced by Ord (1975) and Hepple (1976) used maximum
likelihood (ML); this was followed up by Anselin (1988)

® Bayesian methods are reviewed by LeSage and Pace (2009)

® Generalised method of moments (GMM) methods are reviewed by Kelejian and Piras (2017),
based on earlier work by (Kelejian and Prucha 1998, 1998)

® Other methods like the Conley (1999) approach are clearly spatial econometrics, but are

not often discussed in the same way (no spatial weights matrices are used)

® Please see Bivand, Millo, and Piras (2021) and Bivand and Piras (2015) for summaries of ML

and GMM approaches; the former also covers spatial panel models



Maximum likelihood

The log-likelihood function for the spatial lag model is:

N N
U(B, proy,0°) = — In 27 — o Ino?+mnI—p, W|
1

—52 (=P, W)y — XA) (1= p,, W)y — Xp)]

and by extension the same framework is used for SDM when [X(WX)] are grouped together.
The sum-of-squared errors (SSE) term in the square brackets is found using auxiliary
regressions e = y — (X'X)Xy and u = Wy — (X' X)XWy, and

SSE=e'e— 2pLaguTe + pfaguTu. The cross-products of u and e can conveniently be
calculated before line search (univariate non-linear optimisation) begins.
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Log determinant

The first published versions of the eigenvalue method for finding the log determinant Ord (1975)

IS:

%z

In(|T— pW|) =) In(1 - p;)

i=1
where (; are the eigenvalues of W. One specific problem addressed by Ord (1975) is that of the
eigenvalues of the asymmetric row-standardised matrix W with underlying symmetric
neighbour relations ¢;; = ¢;;. If we write w = C1, where 1 is a vector of ones, we can get:
W = CD, where D = diag(1/w); by similarity, the eigenvalues of W are equal to those of:
D2CD?3. From Pace and Barry (1997), sparse Cholesky and sparse LU alternatives were
available for cases in which finding the eigenvalues of a large weights matrix would be
impracticable. Bivand, Hauke, and Kossowski (2013) describe the available alternatives.
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Bayesian methods

® |eSage and Pace (2009) and their earlier and later work form the foundation for Markov
chain Monte Carlo (MCMC) approaches; these by extension admit limited dependent

variables in a convenient way

® Griddy Gibbs sampling from a spline smooth of values of LU decomposition-based log

determinants are used for spatial process coefficients

® Gomez-Rubio, Bivand, and Rue (2021) describe the use of a new experimental latent model
"s1m" in INLA (integrated nested Laplace approximation), complementing many existing

latent models for spatial regression

® The work presented by LeSage and Pace (2009) is further documented by Matlab code,
which is often used for comparison http://www.spatial-econometrics.com/

21


http://www.spatial-econometrics.com/

Bivand, Millo, and Piras (2021) and Bivand and Piras (2015) review and summarise GMM

approaches to estimation

These methods handle the spatially lagged response Wy by taking WX and WWX (or
more similar terms) as instruments

The spatially lagged error term is handled by non-linear optimisation; both of these
choices remove the need to handle the log determinant term

GMM can also handle RHS endogenous covariates by the use of instrumental variables

22



R packages implementing spatial

econometrics methods



R packages implementing spatial econometrics methods i

® Navigating through the R package ecosystem is not easy; Joo et al. (2020) make a thorough
attempt to track down packages for time-space movement data

® Task Views are the mechanism proposed twenty years ago when there were many fewer

contributed packages

® Zeileis, McDermott, and Tappe (2023) maintain the Econometrics task view and mention
spatial regression

® Bivand and Nowosad (2023) maintain the Spatial task view, which covers handling,
mapping and analysing spatial data, and also mention spatial regression

23



R packages implementing spatial econometrics methods ii

® Pebesma and Bivand (2022) maintain the SpatioTemporal task view and mention

spatio-temporal regression

® None of the task views concentrates on spatial econometrics, so perhaps review and

comparison articles may assist

® Also note that acceptance on the Comprehensive R Archive Network (CRAN) only certifies
that the package meets general standards for packages (licence declared, code runs
examples and tests, functions are as least minimally documented), it does not confirm

that packages do what they claim to do

® [fthere is a ]SS or other published article subject to substantive peer review, one can be

more confident on this point
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R packages implementing spatial econometrics methods iii

® Bivand, Millo, and Piras (2021) summarise and present central R packages for spatial
econometrics: spatialreg for ML (Bivand and Piras 2022, bold are R package names), sphet
for GMM (see Piras (2010), Piras (2022)), and splm (Millo and Piras 2012, 2022), building on
plm (Croissant, Millo, and Tappe 2022), for spatial panel models, (see Millo and Piras (2012),
Croissant and Millo (2008), Millo (2017) and Croissant and Millo (2018))

® These packages are also tightly integrated in the use of the same estimation methods for
the log determinant in ML estimation, and sharing infrastructure to estimate impacts; see

also chapter 17 in Pebesma and Bivand (2023)
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R packages implementing spatial econometrics methods iv

® Bivand, Millo, and Piras (2021) and chapter 16 in Pebesma and Bivand (2023) also follow
Bivand et al. (2017), which was provoked by work with Osland, Thorsen, and Thorsen (2016)
on multi-level models, and the now-archived HSAR package (Dong, Harris, and Mimis
(2020))

® In chapter 14 in Pebesma and Bivand (2023), the use of spdep (Bivand 2023), used to create
spatial neighbour objects, and from these spatial weights objects is presented

® |f we see which other packages use this functionality in spdep, we can extend the scope of

packages engaging with broadly understood spatial econometrics
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R packages implementing spatial econometrics methods v

® There are six packages in small area estimation: emdi (Harmening et al. 2022), saeRobust
(Warnholz 2023), saeSim (Warnholz and Schmid 2022), tipsae (De Nicolo and Gardini 2023),
mcmcsae (Boonstra 2023) and SUMMER (Li et al. 2022)

® Some of these are also mentioned in the Official Statistics task view (Templ, Kowarik, and
Schoch 2022)

® Apart from these, there are many other relevant packages in application areas close to
spatial econometrics; note overlaps between package authors showing something of the
contributed package ecosystem network. For references to underlying methods, see the
packages’ documentation
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R packages implementing spatial econometrics methods vi

® ssfa (Fusco and Vidoli 2022) provides functions for spatial stochastic frontier analysis
among a number of SFA packages noted in the Econometrics task view

® Heterogeneity is approached in SpatialRegimes (Vidoli and Benedetti 2022) and hspm
(Piras and Sarrias 2022); conleyreg (Diiben 2022; Conley 1999) provides a selection of
high-performance spatially-clustered residual methods

® spsur (Angulo et al. 2022) and pspatreg (Minguez et al. 2022) contain spatial seemingly
unrelated and semiparametric regression models; spqdep (Lopez et al. 2022) is from some
of the same team and implements a number of tests for categorical data

® SDPDmod (Simonovska 2022) is a recent package for spatial dynamic panel data extending
splm
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R packages implementing spatial econometrics methods Vvii

® spmoran (Murakami 2022) provides modern extensions to
spatialreg::SpatialFiltering() for spatial filtering, the addition of selected
eigenvectors of the doubly-centred spatial weights matrix to “wash” spatial dependence
from the residuals

® McSpatial (McMillen 2013a) will hopefully re-appear on CRAN and provides code for
McMillen (2013b), for quantile regression for spatial data, and early GMM methods for
limited dependent variables. spldv (Sarrias and Piras 2022) is a recent package for limited
dependent variables, while spatialprobit (Wilhelm and de Matos 2022) fits models for
limited dependent variables using MCMC following LeSage and Pace (2009), and
ProbitSpatial (Martinetti and Geniaux 2021) uses the approximate value of the true
likelihood of spatial probit models for fast estimation
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R packages implementing spatial econometrics methods Vviii

® spflow (Dargel and Laurent 2021) provides origin-destination spatial models and spnaf (Y.

Lee et al. 2022) spatial network models

® There are very many simulation-based (MCMC and other sampling schemes) packages,
both specialised: CARBayes (D. Lee 2022) for conditional autoregressive models typically
for disease mapping, and general packages permitting the use of MRF spatially structured
random effects: geostan (Donegan 2022), R2BayesX (Umlauf, Kneib, et al. 2022), brms
(Blrkner 2022) and bamlss (Umlauf, Klein, et al. 2022), using models stemming from
WinBUGS and GeoBUGS; many are listed in the Bayesian task view (Jong Hee Park 2022)
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R packages implementing spatial econometrics methods ix

® The INLA package is maintained outside CRAN, but can be installed and updated using
similar mechanisms (Rue, Lindgren, and Teixeira Krainski 2022). CRAN packages including
INLABMA (Gomez-Rubio and Bivand 2018), bigDM (Adin, Orozco-Acosta, and Ugarte 2022),
inlabru (Lindgren and Bachl 2022) and DClusterm (Gomez-Rubio, Serrano, and Rowlingson
2020) use INLA models for fitting spatial and spatio-temporal models (Gomez-Rubio and
Palmi-Perales 2019; Blangiardo and Cameletti 2015; Gomez-Rubio 2020)

® Spatial generalised additive models of various kinds can also be estimated using
gamlss.spatial (De Bastiani, Stasinopoulos, and Rigby 2018), and the MRF smooth in mgcv
(Wood 2022)

® lagsarlmtree (Wagner and Zeileis 2019) inserts spatialreg: :lagsarlm() into a partykit

tree-structured regression model framework
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R packages implementing spatial econometrics methods x

® In the training/testing paradigm, waywiser (Mahoney 2022) provides a number of ways of
assessing predictive models of spatial data, among others using spatialsample (Silge and
Mahoney 2023) for spatial resampling mlr3spatiotempcv (Schratz and Becker 2022);
blockCV (Valavi et al. 2023) also provides spatial resampling, and CAST (Meyer, Mila, and
Ludwig 2023) uses caret models incorporating very important recent results reported by
Mila et al. (2022)
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Support case: willingness to pay for
air pollution mitigation



Is the choice of model specification the only problem? i

® |n practical introductions to spatial econometrics, such as Arbia (2014), Anselin and Rey
(2014), Elhorst (2014), and recently Kopczewska (2020), it may appear to the reader that the
choice of model specification is the key step between data and results

® | have no excuse, having also many convictions for stressing model specification since

Bivand (1984); it does remain vital

® However, the data on which model estimation are based are equally vital, as some
common steps may unwittingly create problems that we subsequently seem to need

special methods to overcome

® The analysis of areal aggregates are particularly prone to a range of entitation problems
(Wilson 2000, 2002)
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Is the choice of model specification the only problem? ii

® not only the dreaded MAUP (Gelfand 2010)
® the ecological fallacy (Wakefield and Lyons 2010)
® and change of support more generally (Gotway and Young 2002)

® see Do, Thomas-Agnan, and Vanhems (2015) and Do, Laurent, and Vanhems (2021) for

reviews of areal interpolation methods
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Boston housing values hedonic model

® Harrison and Rubinfeld (1978b) made a serious and thorough attempt to use census data
observed at the census tract level to try to establish willingness to pay (WTP) for air
pollution abatement in Boston (Harrison and Rubinfeld 1978a, 1978¢)

® Their data set was published in Belsley, Kuh, and Welsch (1980), a book on regression
diagnostics, and began to be used widely, including provision from Newman et al. (1998),
available as R package mlbench (Leisch and Dimitriadou 2021); it is also available from
Statlib http://lib.stat.cmu.edu/datasets/

® Gilley and Pace (1996) provided a corrected dataset, pointing out that the median housing
value variable is, in fact, censored

® Pace and Gilley (1997) added coordinates giving the relative locations of the tracts, and
established that the residuals of the original hedonic regression were autocorrelated,

affecting the willingness to pay estimates o


http://lib.stat.cmu.edu/datasets/

Acronym soup and SAS

® The acronym soup of SLX/SLM/SAR/SEM/SDM/SDEM/SARAR/SAC/SADC/... also reaches
SAS documentation, in two blogs from 2021,
https://blogs.sas.com/content/subconsciousmusings/2021/03/02/spatial-econometric-
modeling-unleashes-the-geographic-potential-of-your-data/ and
https://blogs.sas.com/content/subconsciousmusings/2021/08/09/automate-spatial-
regression-model-selection-using-proc-cspatialreg/

® Both of these use the Boston data set, but just focus on mapping and fitting standard
spatial econometrics models to a subset of the covariates (omitting the air pollution

measure

® They also use 1970 tract boundaries without describing how they were generated, and
without taking up the challenges of the data set, not even mentioning that the response is

censored
36


https://blogs.sas.com/content/subconsciousmusings/2021/03/02/spatial-econometric-modeling-unleashes-the-geographic-potential-of-your-data/
https://blogs.sas.com/content/subconsciousmusings/2021/03/02/spatial-econometric-modeling-unleashes-the-geographic-potential-of-your-data/
https://blogs.sas.com/content/subconsciousmusings/2021/08/09/automate-spatial-regression-model-selection-using-proc-cspatialreg/
https://blogs.sas.com/content/subconsciousmusings/2021/08/09/automate-spatial-regression-model-selection-using-proc-cspatialreg/

® The SAS blogs follow general practice, not only in spatial econometrics, of comparative
tabulation of model output and significance tests of fitted coefficients and goodness of fit
statistics

® |n the following, this practice will also be followed, but acknowledgement that multiple
comparisons adjustments should have been applied is sensible

® Fitting multiple successive models to the same data, comparing the models for possible
specifications, and choosing the estimated model suiting one’s convictions is obviously
highly subjective
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Boston housing values hedonic model

® Bivand (2017) is based on access to historical online census data, both for the boundaries

of the tracts, and for analysis of the census-based covariates and response variable

® The response was the weighted median of counts of responses to a self-assessed item in
the 1970 census: If you live in a one-family house which you own or are buying - what is
the value of this property? That is, how much do you think this property (house and lot)

would sell for if it were for sale?
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Censoring and exclusion

® The values were < $ 5000, ... >= $ 50000, with 9 intervening unequal intervals; this is why a

weighted median was used to calculate reported tract median values

® Some urban tracts had no such properties and were omitted, others had median values of
$ 5000 (left censored) and $ 50000 (right censored)

® Even for tracts with assessed properties, the property counts varied greatly between tracts
(minimum 5, median 511, maximum 3031); case weights were considered but not used
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Starting the examples

library(sf)

b540 <- st_read("data/bo_540_df4.shp", quiet=TRUE)

b540$censored <- rep("included", nrow(b540))
b540$censored[is.na(b540$CMEDV)] <- "excluded"

b540$censored[b540$CMEDV == 5 & is.na(b540%$median)] <- "left censored"
b540$censored[b540$CMEDV == 50 & is.na(b540$median)] <- "right_censored"

table(b540%$censored)
#it
#it excluded included Tleft_censored right_censored

i 34 489 2 15
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Where are the drop-outs?

b540 - censored

excluded

included P
left_censored £
right_censored &




Harbor area Labor Day 1
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Naive tract median housing values

b540 - CMEDV
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How was air pollution measured to use as a covariate?

® Use was made of the Transportation and Air Shed Simulation Model (TASSIM) (Ingram and
Fauth 1974; Ingram, Fauth, and Kroch 1974)

® This generated output not from measurement of actual air pollution in 1970, but rather
predictions from point-source polluters (mostly near the port), and from major highways

through meteorological models

® The predictions were reported for 122 model output zones extending beyond the parts of
the Boston SMSA used for the WTP study

® The model output zones appear to roughly coincide with towns - administrative districts,
of which there are 92 in the 506 tract dataset, 15 in Boston itself
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What is the support of the key WTP covariate?

We'll reconstruct the data objects used in Pebesma and Bivand (2023) chapters 16-17 (refer to
these for details), and the data set as provided in the spData package (Bivand, Nowosad, and
Lovelace 2022), and use them here.

The number of unique values of the NOX variable in the data set is well below 506, the number
of tracts in the original data set

length(unique(boston_506$NO0X))

# [1] 81
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Spatial autocorrelation: tracts vs. model output zones

This indicates that the tract values were copied to tracts intersecting the model output zones;
however, strong positive spatial autocorrelation was present in the model output zones already,
as is only reasonable:

Tract level NOX spatial autocorrelation

spdep: :moran.test(boston_506$NOX, lw_q_506) |> glance_htest()

## Moran I statistic Expectation Variance Std deviate
Hit 9.065225e-01 -1.980198e-03 7.271085e-04 3.369199e+01
#it p.value

i 3.786993e-249
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Spatial autocorrelation: tracts vs. model output zones

Model output zone level NOX spatial autocorrelation

spdep: :moran.test(boston_93$NOX, 1w_q_93) |> glance_htest()

## Moran I statistic Expectation Variance Std deviate
Hit 7.578171e-01 -1.086957e-02 4.669481e-03 1.124903e+01
#it p.value
H#it 1.170779e-29

The model output forms an uneven cone declining with distance from the central business
district and harbour, so autocorrelation when reported for neighbouring entities on the surface
of the cone is to be expected
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Naive tract NOX air pollution values
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Are our results the same as SAS? i

The SAS blogs use a subset of the actual covariates used by Harrison and Rubinfeld (1978b). For
the chosen covariates and 506 census tracts, the coefficient values agree in the linear model
case:

coef(lm(log(CMEDV) ~ log(PTRATIO) + 1og(LSTAT), data=boston_506))

## (Intercept) log(PTRATIO) 1og(LSTAT)
## 6.0247877 -0.6122500 -0.5102814
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Are our results the same as SAS? ii

and in the spatial error model case (using spatialreg::errorsarlm() and pre-computing
the spatial weights object eigenvalues):

e <- spatialreg::eigenw(lw_qg_506)
coef(spatialreg::errorsarlm(log(CMEDV) ~ 1og(PTRATIO) + log(LSTAT),
data=boston_506, listw=1lw_qg_506, control=1ist(pre_eig=e)))

it lambda (Intercept) log(PTRATIO) Tog(LSTAT)
## 0.7630700 5.1150187 -0.3880317 -0.4100675
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Are our results the same as SAS? iii

Finally, the AIC of the general nested model also agrees (listed as SDAC in the blog):

AIC(spatialreg: :sacsarlm(log(CMEDV) ~ 1log(PTRATIO) + log(LSTAT),
data=boston_506, listw=1lw_q_506, Durbin=TRUE,
control=1list(pre_eigl=e, pre_eig2=e)))

##t [1] -377.6966

Using the SAS covariates, the 506 tract data set, and ignoring censoring, the GNM would also be

chosen as the best alternative by AIC.
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Omitting the censored tracts i

We pre-compute the eigenvalues of the 487 tract dataset, and specify the same covariates as
were used in the original article (any changes are noted in Bivand (2017))

e <- spatialreg::eigenw(lw_q_487)
f <- formula(log(median) ~ I(RM"2) + AGE + 1log(DIS) + log(RAD) + TAX +

PTRATIO + I(BB/100) + log(I(LSTAT/100)) + CRIM + ZN + INDUS +
CHAS + I((NOX*10)"2))
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Omitting the censored tracts ii

Omitting the censored tracts creates no-neighbour observations, which can be accommodated
here using the zero.policy= argument; the GNM, SDEM and SLX are estimated (CHAS is a
categorical variable, for which the spatial lag is not well understood, and is here omitted from

the Durbin term):

GNM_487 <- spatialreg::sacsarlm(f, data=boston_487, listw=1lw_q_487,
zero.policy = TRUE, Durbin=update(f, ~ . - CHAS),
control=1list(pre_eigl=e, pre_eig2=e))

SDEM_487 <- spatialreg::errorsarlm(f, data=boston_487, listw=1lw_q_487,
zero.policy = TRUE, Durbin=update(f, ~ . - CHAS),
control=1list(pre_eig=e))

SLX_487 <- spatialreg::lmSLX(f, data=boston_487, listw=1lw_q_487,
zero.policy = TRUE, Durbin=update(f, ~ . - CHAS))
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Omitting the censored tracts iii

Performing likelihood ratio tests, the most complex model is preferred:

options(show.signif.stars=FALSE)

0 <- lmtest::lrtest(GNM_487, SDEM_487)

attr(o, "heading")[2] <- "GNM_487 vs. SDEM_487"
)

## Likelihood ratio test

it

## GNM_487 vs. SDEM_487

##  #Df LoglLik Df Chisq Pr(>Chisq)
## 1 29 311.45

##t 2 28 307.65 -1 7.5901 0.005869
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Omitting the censored tracts iv

while the SDEM is clearly preferred before SLX:

0 <- lmtest::lrtest(SDEM_487, SLX 487)
attr(o, "heading")[2] <- "SDEM_487 vs. SLX_487"

0o

## Likelihood ratio test

#Het

## SDEM_487 vs. SLX_487

##  #Df LoglLik Df Chisq Pr(>Chisq)
##t 1 28 307.65

## 2 27 226.96 -1 161.38 < 2.2e-16
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Omitting the censored tracts v

Pace and LeSage (2008) propose a test for SEM/SDEM models to check that the fitted coefficient
values are close enough to the equivalent linear models; here they are not, SDEM is not well

specified:
spatialreg::Hausman.test(SDEM_487)

#i

## Spatial Hausman test (asymptotic)

#i

## data: NULL

## Hausman test = 52.257, df = 26, p-value = 0.001674

56



Fitting models for the model output zones i

Once again we fit three models including the spatially lagged continuous covariates:

e <- spatialreg::eigenw(lw_q_94)

GNM_94 <- spatialreg::sacsarlm(f, data=boston_94, listw=1lw_q_94,
zero.policy = TRUE, Durbin=update(f, ~ . - CHAS),
control=1list(pre_eigl=e, pre_eig2=e))

SDEM_94 <- spatialreg::errorsarlm(f, data=boston_94, listw=1lw_q_94,
zero.policy = TRUE, Durbin=update(f, ~ . - CHAS),
control=1list(pre_eig=e))

SLX_94 <- spatialreg::lmSLX(f, data=boston_94, listw=1w_q_94,
zero.policy = TRUE, Durbin=update(f, ~ . - CHAS))
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Fitting models for the model output zones ii

and test GNM versus SDEM (GNM does not fit better than SDEM):

0 <- lmtest::lrtest(GNM_94, SDEM 94)
attr(o, "heading")[2] <- "GNM_94 vs. SDEM_94"

0o

## Likelihood ratio test

#Het

## GNM_94 vs. SDEM_94

##  #Df LoglLik Df Chisq Pr(>Chisq)
## 1 29 81.164

##t 2 28 81.163 -1 5e-04 0.9831
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Fitting models for the model output zones iii

then SDEM versus SLX (SDEM does not fit better than SLX):

0 <- lmtest::lrtest(SDEM_94, SLX 94)
attr(o, "heading")[2] <- "SDEM_94 vs. SLX_94"

0o

## Likelihood ratio test

#Het

## SDEM_94 vs. SLX_94

##  #Df LoglLik Df Chisq Pr(>Chisq)
## 1 28 81.163

## 2 27 81.106 -1 0.1149 0.7347

59



Fitting models for the model output zones iv

and finally SLX versus a linear model without spatially lagged continuous covariates (SLX does
fit better than LM):

LM_94 <- 1m(f, data=boston_94)

0 <- lmtest::lrtest(SLX_94, LM_94)

attr(o, "heading")[2] <- "SLX_ 94 vs. LM_94"
0

## Likelihood ratio test

#et

## SLX_94 vs. LM_94

##  #Df LoglLik Df Chisq Pr(>Chisq)
#t 1 27 81.106

## 2 15 58.452 -12 45.308 9.124e-06
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Fitting models for the model output zones v

The linear model does show some spatial autocorrelation in its residuals:

spdep::lm.morantest(LM_94, listw=1lw_q_94) |> glance_htest()

## Observed Moran I Expectation Variance Std deviate
#Het 0.087773954 -0.051758503 0.003826674 2.255612673
#it p.value

Hit 0.012047449
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Fitting models for the model output zones vi

but this is reduced in the residuals of the SLX model:

spdep::lm.morantest(SLX_94, listw=1lw_q_94) |> glance_htest()

## Observed Moran I Expectation Variance Std deviate
#Het 0.018425326 -0.077139644 0.003767882 1.556861818
#it p.value

H# 0.059751648
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Fitting models for the model output zones vii

The Hausman test does not find differences between the regression coefficients of the SLX and
SDEM models:

spatialreg::Hausman.test(SDEM_94)

Hit

## Spatial Hausman test (asymptotic)

Hit

## data: NULL

## Hausman test = 3.175, df = 26, p-value =1
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and with weights: i

We repeat the exercise using weights (the counts of houses used to calculate the response
variable):

SDEM_94w <- spatialreg::errorsarlm(f, weights=units, data=boston_94,
listw=1w_q_94, zero.policy = TRUE, Durbin=update(f, ~ . - CHAS),
control=1list(pre_eig=e))

SLX_94w <- spatialreg::lmSLX(f, weights=units, data=boston_94,
listw=1w_q_94, zero.policy = TRUE, Durbin=update(f, ~ . - CHAS))
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and with weights: ii

Again, the weighted SDEM model does not fit better than the weighted SLX model:

0 <- lmtest::lrtest(SDEM_94w, SLX_ 94w)
attr(o, "heading")[2] <- "SDEM_94w vs. SLX_94w"

0o

## Likelihood ratio test

#Het

## SDEM_94w vs. SLX_94w

##  #Df LoglLik Df Chisq Pr(>Chisq)
##t 1 28 97.997

## 2 27 97.527 -1 0.9401 0.3323
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and with weights: iii

but the weighted SLX model with spatially lagged continuous coordinates included is clearly

better than the weighted linear model:

LM_94w <- 1m(f, weights=units, data=boston_94)
0 <- lmtest::lrtest(SLX_94w, LM_94w)
attr(o, "heading")[2] <- "SLX_ 94w vs. LM_94w"

(o]

## Likelihood ratio test

#et

## SLX_94w vs. LM_94w

##  #Df LoglLik Df Chisq Pr(>Chisq)
#t 1 27 97.527

## 2 15 81.038 -12 32.978 0.0009758
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and with weights: iv

The weighted linear model shows substantial residual autocorrelation:

spdep::lm.morantest(LM_94w, listw=1lw_q_94) |> glance_htest()

## Observed Moran I Expectation Variance Std deviate
#Het 2.084688e-01 -4.779942e-02 3.952739e-03 4.076108e+00
#it p.value

H# 2.289786e-05
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and with weights: v

and the weighted SLX model has some residual spatial autocorrelation:

spdep::lm.morantest(SLX_94w, listw=1lw_q_94) |> glance_htest()

## Observed Moran I Expectation Variance Std deviate
#Het 0.074962529 -0.078790019 0.003792667 2.496605785
#it p.value

H# 0.006269413
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The impacts for SLX and SDEM models do not involve the coefficient on the spatially lagged
response, so can be created with their standard errors by linear combination:

0_SLX <- summary(spatialreg::impacts(SLX_94))
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|IIHHHHHHHIIiIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Tabulating for the SLX variable for the air pollution variable, we see that the direct and indirect
(local spillovers) are both sizable, as are their total:

cn <- c("impacts", "se", "z-value", "p-value")
sapply(o_SLX[3:6], function(x) x["I((NOX * 10)72)",1) >
as.data.frame() |> magrittr::set_names(cn)

#Hit impacts se z-value p-value
## Direct -0.01284041 0.002774153 -4.628589 3.681652e-06
## Indirect -0.01917370 0.005432929 -3.529164 4.168741e-04
## Total -0.03201411 0.005954414 -5.376534 7.593317e-08
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IIHIHHHH%IiIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

In the weighted case, the local spillovers are greater than the direct impacts, and the total
impacts are reduced compared to the unweighted model:

0_SLXw <- summary(spatialreg::impacts(SLX_94w))
sapply(o_SLXw[3:6], function(x) x["I((NOX = 10)"2)",1) |>
as.data.frame() |> magrittr::set_names(cn)

#Hit impacts se z-value p-value
## Direct -0.006225692 0.003235771 -1.924021 0.054351892
## Indirect -0.011927052 0.005859945 -2.035352 0.041815445
## Total -0.018152745 0.005921712 -3.065456 0.002173386
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The outcomes for the SDEM and weighted SDEM models are very similar:

0_SDEM <- summary(spatialreg::impacts(SDEM_94))
sapply(o_SDEM[3:6], function(x) x["I((NOX % 10)"2)",1) |>
as.data.frame() |> magrittr::set_names(cn)

#it impacts se z-value p-value
## Direct -0.01286931 0.002352776 -5.469842 4.504381e-08
## Indirect -0.01903733 0.004635196 -4.107126 4.006126e-05
## Total -0.03190665 0.005162277 -6.180731 6.380549e-10
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IIHIHHH%HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

0_SDEMw <- summary(spatialreg::impacts(SDEM_94w))
sapply(o_SDEMw[3:6], function(x) x["I((NOX = 10)"2)",1) [>
as.data.frame() |> magrittr::set_names(cn)

##t impacts se z-value p-value
## Direct -0.005916509 0.002693549 -2.196548 0.028052726
## Indirect -0.010703048 0.005070825 -2.110712 0.034797114
## Total -0.016619558 0.005373664 -3.092780 0.001982914
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IIHH%iHHIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

If we go back to the original census tract level models, and examine the direct/total impacts,

they are substantially smaller, both for the linear model:

LM_506 <- 1m(update(f, log(MEDV) ~ .), data=boston_506)
printCoefmat(coef(summary(LM_506))["I((NOX = 10)"2)",, drop=FALSE])

## Estimate Std. Error t value Pr(>|t])
## I((NOX * 10)"2) -0.0065753 0.0011240 -5.8499 8.98e-09
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IIHH%iiHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

and the spatial error model with added trend surface covariates:

SEM_506 <- spatialreg::errorsarlm(update(f, log(CMEDV) ~ . +
poly(LON, LAT, degree=2)), data=boston_506, listw=1lw_q_506)
printCoefmat(coef(summary(SEM_506))["I((NOX = 10)"2)",, drop=FALSE])

#it Estimate Std. Error z value Pr(>]|z])
## TI((NOX * 10)"2) -0.0047442 0.0015085 -3.145 0.001661

The weakest weighted model output zone SDEM total impact of the air pollution covariate is still

2.5 times greater than the original calculation.
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The willingness to pay for a one part per hundred million (pphm) reduction in NOX in 1970 USD
in the original article are taken as the mean difference between prediction from the base model

using the original data, and prediction with NOX reduced by 01 parts per ten million (1 pphm;
the formula expression is I((NOX*10)"2))):

boston_506_1 <- boston_506
boston_506_1$NOX <- boston_506_1$NOX - 0.1
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IlHiHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Since the response was taken as the logarithm of median housing value per tract or model
output zone, we take the exponents of the mean predictions (in the original article USD 1613 was
reported when all variables apart from NOX were set at their mean values):

pO <- predict(LM_506, newdata=boston_506)
pl <- predict(LM_506, newdata=boston_506_1)
1000*(exp(mean(p1)) - exp(mean(p®)))

## [1] 1426.712
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IlNiHiIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

This is reduced when using the NOX coefficient from the all-tracts spatial error model:

pO <- predict(SEM_506, newdata=boston_506, listw=1lw_q_506)
pl <- predict(SEM_506, newdata=boston_506_1, listw=1lw_q_506)
1000*(exp(mean(p1)) - exp(mean(p0®)))

## [1] 1009.061
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Repeating the exercise for the 94 air pollution model output zones dataset:

boston_94_1 <- boston_94
boston_94 1$NOX <- boston_94 1$NOX - 0.1

we see an apparently much larger WTP in the SLX model:

pO <- predict(SLX_94, newdata=boston_94, listw=1w_q_94)
pl <- predict(SLX_94, newdata=boston_94_1, listw=1lw_q_94)
exp(mean(p1)) - exp(mean(p0))

## [1] 8168.437
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IlNiHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Taking the SLX model weighted by the number of reported housing units per model output zone,
varying from a minimum of 25 to a maximum of 12411, and a median of 3020, and with the lowest
unit counts seen where NOX values are highest:

pO <- predict(SLX_94w, newdata=boston_94, listw=1w_q_94)
pl <- predict(SLX_94w, newdata=boston_94_1, listw=1lw_q_94)
exp(mean(p1)) - exp(mean(p0))

## [1] 4291.622
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|I|HiiIiiIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

For safety’s sake, the SDEM WTP is:

pO <- predict(SDEM_94, newdata=boston_94, listw=1w_q_94,
legacy.mixed=TRUE)

pl <- predict(SDEM_94, newdata=boston_94_1, listw=1lw_q_94,
legacy.mixed=TRUE)

exp(mean(p1)) - exp(mean(p0))

## [1] 8136.228
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IlHiHIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

and the weighted SDEM:

pO <- predict(SDEM_94w, newdata=boston_94, listw=lw_q_94,
legacy.mixed=TRUE)

pl <- predict(SDEM_94w, newdata=boston_94_1, listw=1w_q_94,
legacy.mixed=TRUE)

exp(mean(p1)) - exp(mean(p0))

## [1] 3891.738

differing very little from the comparably specified SLX model outcomes. These suggest that an
average WTP of about USD 1500 in the original article could have been increased by a factor of
three had the analysis been conducted on more appropriate support, and using the indirect

local spillovers given by the spatially lagged covariates.
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How do multi-level models fit into the picture? i

We could think that adding IID or MRF terms at the level of the model output zones, in addition
to copying out upper level covariates to lower level tract entities, might help:

library(Matrix)

library(lme4)

MLM <- 1mer(update(f, . ~ . + (1 | NOX_ID)),
data = boston_487, REML = FALSE)

summary(MLM)$coefficients["I((NOX * 10)"2)",]

#it Estimate Std. Error t value
##t -0.003479827 0.002260249 -1.539577132
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How do multi-level models fit into the picture? ii

We can see that the NOX coefficient is relatively small, something that is reflected in the very
moderate WTP estimates in the 11D random effects case:

boston_487_1 <- boston_487
boston_ 487 1$NOX <- boston_487_1$NOX - 0.1
pO <- predict(MLM, newdata=boston_487)

pl <- predict(MLM, newdata=boston_487_1)
(exp(mean(p1)) - exp(mean(pd)))

## [1] 726.7937
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How do multi-level models fit into the picture? iii

The estimates and WTP outcomes in the IID case are very similar using mgcv: : gam( ):

suppressPackageStartupMessages(library(mgcv))

GAM_iid <- gam(update(f, . ~ . + s(NOX_ID, bs = "re")),
data = boston_487, method = "REML")

summary(GAM_iid)$p.table["I((NOX * 10)"2)",]

it Estimate Std. Error t value Pr(>]t])
## -5.787834e-03 1.075113e-03 -5.383464e+00 1.153104e-07
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How do multi-level models fit into the picture? iv

pO <- predict(GAM_iid, newdata=boston_487)
pl <- predict(GAM_iid, newdata=boston_487_1)
(exp(mean(p1)) - exp(mean(p@)))

##t [1] 1223.08
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How do multi-level models fit into the picture? v

If we include a spatially structured random effect expressed as an Markov random field, the

results are even more depressing:

names(nb_q_93) <- attr(nb_q_93, "region.id")
boston_487$NOX_ID <- as.factor(boston_ 487$NOX_ID)
GAM_MRF <- gam(update(f, . ~ . +
s(NOX_ID, bs = "mrf", xt = list(nb = nb_q_93))),
data = boston_487, method = "REML")
summary(GAM_MRF)$p.table["I((NOX * 10)"2)",]

## Estimate  Std. Error t value Pr(>]t])
#i# -0.002085996 0.002185312 -0.954553195 0.340364383
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How do multi-level models fit into the picture? vi

pO <- predict(GAM_MRF, newdata=boston_487)
pl <- predict(GAM_MRF, newdata=boston_487_1)
(exp(mean(p1)) - exp(mean(p@)))

##t [1] 432.6188

Unfortunately, the coefficient estimates for the air pollution variable for these multilevel
models are not helpful. All are negative as expected, but the inclusion of the model output zone
level effects, 11D or spatially structured, makes it is hard to disentangle the influence of the
scale of observation from that of covariates observed at that scale rather than at the tract level.
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Conclusions so far

® Entitation, that is using spatial entities that match the aims of the study being undertaken,
is as important as the technical specification of the estimation model

® |n addition to the aims of the study, the entities should try to match the spatial footprint
of known spatial processes avoiding unnecessary or avoidable leakage or spillover

between entities
® Sensitivity to assumptions concerning functional form in (generalised) linear models

® So spatial econometrics isn't as simple as the SAS blogs, is it?
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