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1 Introduction

This set of exercises will show how you can take a shapefile containing the boundaries
of urban tracts (sectors), and values of variables, read them intoR, clean the data,
and proceed to explore and analyse them. The sample analyses made here are not
necessarily successful in demonstrating any particular relationships in the data as such:
it is up to you to try to vary the approaches made, and to examine the results actively,
to see what more you can find out.

2 Reading and cleaning the shapefile

The data examined here were presented in the following article: LAPA, TM; XIMENES,
RAA; SILVA, NN; SOUZA, WV; ALBUQUERQUE, MFM; GOUVEIA, GC. Leprosy
surveillance in Olinda, Brazil, using spatial analysis techniques.Cadernos de Saúde
Pública, 17(5): 1153-1162, 2001, and have been made available by kind permission
from the authors. The city of Olinda is located on Brazil’s coast immediately north
of the larger city of Recife, at approximately 35◦W, 8◦S. In the following, we will be
terming Leprosy Hansen’s Disease, because one of us is located in the city where Dr
Armauer Hansen studied the disease, Bergen in Norway.

In order to read the data intoR, we load themaptools package intoR. This is
one of three contributed packages needed here over and above theR base distribution,
and should be obtained from CRAN and installed before work begins. The shape-
file format presupposes that you have three files with extensions*.shp , *.shx , and
*.dbf , where the first contains the geometry data, the second the spatial index, and the
third the attribute data. We are distributing a zip archive file with this document called
olinda.zip in the olinda directory below the directory in which this document is
placed. Once you have found the zip file, unpack the three shapefile components toR’s
temporary directory, and read them from there usingread.shape() . By default, this
function reads in the data in all three files, although it is only given the name of the file
with the geometry.

Since there is no projection information in this minimal set of shapefiles, we need
to establish from external sources that the map data are projected, with the following
parameters: UTM zone 25 South, measured in metres (for PROJ.4, use: +proj=utm
+zone=25 +south); most probably WGS84 datum/ellipse. Knowing the projection
metadata of the geometric data is of importance if, for example, further data is to
be added at a later data, for example for point addresses of health stations to check

1



whether more cases are reported near a station, or for lines such as roads or drainage
channels.

> library(maptools)
> zip.file.extract("setor1.shp", "olinda/olinda.zip")

[1] "/tmp/Rtmp15523/setor1.shp"

> zip.file.extract("setor1.shx", "olinda/olinda.zip")

[1] "/tmp/Rtmp15523/setor1.shx"

> zip.file.extract("setor1.dbf", "olinda/olinda.zip")

[1] "/tmp/Rtmp15523/setor1.dbf"

> setor.shp <- read.shape(paste(tempdir(), "setor1.shp", sep = "/"))

Shapefile Type: Polygon # of Shapes: 243

Field name: SETOR_ changed to: SETOR.
Field name: SETOR_ID changed to: SETOR.ID
Field name: DENS_DEMO changed to: DENS.DEMO

> class(setor.shp)

[1] "Map"

> names(setor.shp)

[1] "Shapes" "att.data"

The imported object inR has classMap, and is a list with two components,"Shapes" ,
which is a list of shapes, and"att.data" , which is a data frame with tabular data,
one row for each shape in"Shapes" . Let us move the attribute data to a separate data
frame for convenience:

> setor <- setor.shp$att.data
> names(setor)

[1] "AREA" "PERIMETER" "SETOR." "SETOR.ID" "VAR5" "DENS.DEMO"
[7] "SET" "CASES" "POP" "DEPRIV"

> setor.polys <- Map2poly(setor.shp, region.id = setor$SET)
> setor.cents <- get.Pcent(setor.shp)

> cols = c("red", "grey")
> plot(setor.shp, fg = cols[(setor$SET > 0) + 1], xlab = "", ylab = "")

We can examine the names of the columns of the data frame to see what it contains.
For our purposes, the variables of interest are "CASES" — case counts of the disease,
"POP" — the population at risk in this period, and "DEPRIV" — a measure of social
deprivation. We will similarly convert the geometry format of theMapobject to that of
a polylist object, which will be easier to handle. Finally, we retreive the centroids
of the tract polygons to use as label points.

One problem that we need to handle straight away is that we have geometry for 243
shapes, but we are missing data for 2 tracts with no population - they have zero values
of variableSET in our data frame. In Figure 1, these are marked by being coloured red;
the function used is for plottingMapobjects.

> complete <- setor$SET > 0
> subsetor <- subset(setor, complete)
> subsetor.polys <- subset(setor.polys, complete)
> attributes(subsetor.polys) <- attributes(setor.polys)
> attr(subsetor.polys, "region.id") <- attr(subsetor.polys, "region.id")[complete]
> subsetor.cents <- setor.cents[complete, ]

> plot(subsetor.polys)
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Figure 1: Initial plot of Olinda setor1.shp shapefile data showing two tracts with miss-
ing data.
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Since thepolylist class does not yet have asubset function, we need to update
the attributes of our subset, as well as to generate it using the general function for
subsetting lists. Subsetting the data frame and matrix of polygon centroids do not need
extra steps. The outline map shown in Figure 2 has no polygons for the omitted tracts,
but this cannot be seen, because they are entirely surrounded by other polygons. In
colour-filled maps below, they will be left unfilled.

Figure 2: Plot of subset of Olinda polygons.

It may be of interest to look at the structure of a polygon list member. This is made
up of a two-column matrix with polygon coordinates. In general, each sub-polygon
will have equal first and last coordinates to ensure closure, but this is not absolutely re-
quired. Rows in the coordinate matrix set toNArepresent breaks between sub-polygons,
and are respected by the underlyingR graphics functions. The attributes contain fur-
ther information about the polygon:pstart is a list with from and to components,
which are vectors of first and last rows in the matrix for each sub-polygon in the object
— there arenParts elements in bothfrom and to . RingDir and ringDir should
be the same, and are computed in two different ways to determine whether each of
the nParts sub-polygons runs clockwise or counter-clockwise. Counter-clockwise
sub-polygons are “holes” in the surrounding sub-polygon. Finally,bbox contains the
bounding box of this object. Its appearance is shown in Figure 3.
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Figure 3: Plot of polygon 6 from the list of polygons.

> subsetor.polys[[6]]

[,1] [,2]
[1,] 296693.5 9119921
[2,] 296674.0 9119899
[3,] 296612.9 9119832
[4,] 296604.4 9119837
[5,] 296605.2 9119835
[6,] 296465.2 9119945
[7,] 296303.8 9120071
[8,] 296384.9 9120190
[9,] 296699.9 9119928

[10,] 296693.5 9119921
attr(,"pstart")
attr(,"pstart")$from
[1] 1

attr(,"pstart")$to
[1] 10

attr(,"bbox")
[1] 296303.8 9119832.0 296699.9 9120190.0
attr(,"RingDir")
[1] 1
attr(,"nParts")
[1] 1
attr(,"ringDir")
[1] 1

> subsetor.cents[6, ]

[1] 296498.2 9120007.1

> plot(subsetor.polys[[6]], type = "l", asp = 1, axes = FALSE,
+ xlab = "", ylab = "")

Now that we have made sure that our data and the polygons that they cover are
cleaned, we can draw a choropleth map showing levels of the social deprivation vari-
able DEPRIV — see Figure 4. Something that requires thought and care is the choice of
class intervals; mapping numeric variables almost always requires binning into classes,
and different numbers of bins and bin boundaries can yield maps telling different “sto-
ries”.
> brks <- fivenum(subsetor$DEPRIV)
> cols <- rev(heat.colors(4))
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> plot(subsetor.polys, col = cols[findInterval2(subsetor$DEPRIV,
+ brks)])
> legend(c(289000, 291000), c(9112000, 9114000), legend = leglabs(brks,
+ "<", ">="), fill = cols, bty = "n", cex = 0.9, y.intersp = 0.9)

Here we use the Tukey five-number summary to choose class intervals at the mini-
mum and maximum values observed, at their median and lower and upper hinges; five
boundaries cutting the distribution into four parts with (approximately) equal numbers
of observations. The choice of colours is also rather arbitrary, but we reverse them to
make the “hotter” light colors correspond to less deprivation, the “cooler” red colours
to more deprivation.

Figure 4: Deprivation index values for Olinda, divided by into four classes of equal
numbers of tracts.

We will now turn to our main variable of interest, the counts of cases of Hansen’s
Disease by urban tract in Olinda. The histogram shown in Figure 5 is typical for counts
— there are many tracts with no or few cases, and very few tracts with many cases.
Almost 200 of the 241 tracts have ten cases or less each, and almost 150 tracts have
five cases or less each.

> table(subsetor$CASES)
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 24 25 26 33 37
31 27 21 26 26 14 19 9 9 7 3 13 3 4 3 6 6 6 3 1 1 1 1 1

> histres <- hist(subsetor$CASES, main = "", ylab = "", xlab = "")
> histres$counts

[1] 145 47 29 15 2 1 1 1

> brks <- histres$breaks
> cols <- rev(gray(1:length(histres$counts)/length(histres$breaks)))

> plot(subsetor.polys, col = cols[findInterval2(subsetor$CASES,
+ brks)])
> legend(c(289000, 291000), c(9112000, 9114000), legend = leglabs(brks,
+ "<", ">="), fill = cols, bty = "n", cex = 0.9, y.intersp = 0.9)
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Figure 5: Distribution of the number of cases of Hansen’s Disease.

The corresponding map (Figure 6) uses the bins returned by the histogram func-
tion; it appears that there are only a very few tracts with high counts of cases, perhaps
concentrated in one part of the city.

We could construct a raw rate of Hansen’s Disease counts by dividing the counts
of cases for each tract by the recorded population (for the same period - if counts are
collected over several years, the population figures also need to be adjusted to reflect
the total person-years of risk). Note that population figures for small tracts may also
vary greatly in time, requiring care in drawing conclusions from apparently high rates
(where we have confidence in the case counts) but where the population at risk has
actually grown considerably since our baseline population count.

Here we choose to start using thespdeppackage: spdep, version 0.2-12, 2004-02-
26, which provides aprobmap() function providing the raw rate among other mea-
sures, to which we will return below. We will for now be using theraw rates returned
by the function, and map them using rounded quantiles. Sincequantile() by default
returns the minimum, maximum, and 25%, 50%, and 75% percentiles, this may cor-
respond tofivenum() above. To avoid unnecessarily long legend items, we convert
the raw rates to rates per thousand, and round the result to two digits after the decimal
point. The resulting map is shown in Figure 7.
> library(spdep)

> pm <- probmap(subsetor$CASES, subsetor$POP)
> names(pm)
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Figure 6: Map of the raw counts of occurrences of Hansen’s Disease by tract.
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[1] "raw" "expCount" "relRisk" "pmap"

> brks <- round(quantile(1000 * pm$raw), digits = 2)
> cols <- rev(gray(2:5/6))

> plot(subsetor.polys, col = cols[findInterval2(pm$raw * 1000,
+ brks)])
> legend(c(289000, 291000), c(9112000, 9114000), fill = cols, bty = "n",
+ legend = leglabs(brks, "<", ">="), cex = 0.9, y.intersp = 0.9)

Unlike Figure 6, in which the numbers of tracts in each bin differ greatly (exactly as
in the histogram), Figure 7 has equal numbers of tracts in each bin — this is a choice
that has to be made by the analyst; although software may make it “look” easy, finding
bins — class intervals — for maps that are suited to the needs both of the analyst
and to people to whom the analyst addresses her results is very difficult. If you try
alternative breakpoints, make sure that you have a vector of colour fills that is at least
one less in length than the length of the breakpoint vector. Also try to remember that
we don’t want to use "white", which is the default background colour used for our
dropped empty tracts.

Figure 7: Map of raw rates of occurrence per 1000 of Hansen’s Disease by tract.
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3 Spatial dependence and neighbour relations

One of the features of data collected for spatially located objects or phenomena is that
observations made close to each other are typically more similar to each other than
observations made at greater distances from each other. This nearness is often related
to spatial dependence in the observed data, because it is unusual in many domains of
knowledge for very steep gradients to be present between neighbouring points of obser-
vation — for instance, air temperature is often similar between points near one another
on a flat surface (change in elevation can have a much greater impact than change
across a surface). In order to see whether our data may display spatial dependence,
we can choose between a number of different approaches. One of these is to assume
that we can represent the structure of the dependency by some graph showing which
of our tracts are “neighbours” of which other tracts. This graph does not have to be
symmetric, but the first example is symmetric.

> viz <- poly2nb(subsetor.polys, row.names = subsetor$SET)
> viz

Neighbour list object:
Number of regions: 241
Number of nonzero links: 1324
Percentage nonzero weights: 2.279575
Average number of links: 5.493776

> attr(viz, "region.id")[viz[[match("222", attr(viz, "region.id"))]]]

[1] "223" "225"

> plot(subsetor.polys, border = "grey")
> plot(viz, subsetor.cents, add = TRUE, col = "blue")

Thepoly2nb() function checks the boundaries of each of the polygons against those
of those nearby to see if they share boundary points. If they do, they touch each other,
and are contiguous neighbours. If only a single point is shared between two tracts, they
are “queen”-style neighbours, if two or more consecutive points, they are “rook”-style
neighbours (using the chess analogy). Because quite a lot of checking is involved, this
function is slow, but in general is only used once for each list of polygons. Recall
that we have dropped two empty polygons — they will not be included in the list of
neighbours returned by the function.

Printing the new object shows that it is a neighbour list object, with a very sparse
structure — if displayed as a matrix, only 2.3% of cells would be filled. Objects of
classnb contain a list as long as the number of tracts; each component of the list is
a vector with the index numbers of the neighbours of the tract in question, so that the
neighbours of the tract withregion.id of "222" can be retreived by matching against
the indices. More information can be obtained by usingsummary() on annb object.
Finally, we associate a vector of names with the neighbour list, through therow.names

argument. The names should be unique, as with data frame row names.

> olinda.nb2 <- knn2nb(knearneigh(subsetor.cents, 2), row.names = subsetor$SET)
> olinda.nb2

Neighbour list object:
Number of regions: 241
Number of nonzero links: 482
Percentage nonzero weights: 0.8298755
Average number of links: 2
Non-symmetric neighbours list

> n.comps <- n.comp.nb(olinda.nb2)
> cols <- rainbow(n.comps$nc)
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Figure 8: Contiguity-based neighbour relations for tracts in Olinda.
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> plot(subsetor.polys, border = "grey")
> plot(olinda.nb2, subsetor.cents, add = TRUE, col = cols[n.comps$comp.id])

The k-nearest neighbour definition of neighbourhood is quite often met, because it
makes sure that all tracts have the same number of neighbours. It is sensitive to the
choice of point used to represent the unit of observation, and polygon centroids may
not be the best choice, especially if the distribution of the phenomena of interest within
the polygons is not uniform. For smallerk, all the tracts will havek neighbours, but
there may be more than one components in the graph of relationships. This can be
checked with then.comp.nb() function.

Figure 9: Two-nearest neighbours coloured by graph components.

> olindatri.nb <- tri2nb(subsetor.cents, row.names = subsetor$SET)
> olindasoi.nb <- graph2nb(soi.graph(olindatri.nb, subsetor.cents),
+ sym = TRUE, row.names = subsetor$SET)
> olindasoi.nb

Neighbour list object:
Number of regions: 241
Number of nonzero links: 1112
Percentage nonzero weights: 1.914568
Average number of links: 4.614108

> n.comp.nb(olindasoi.nb)$nc
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[1] 1

Graph neighbour relations are also provided, for a full triangulation usingtri2nb() ,
which has the disadvantage of including “convex hull” neighbours, that is points that
can “see” each other along the edges of the study area, but which may be distant from
one another. The sphere-of-influence graph removes many such spurious links, but
may be too severe, dividing the graph into several components.

All of these methods should make sure that each tract has at least one defined neigh-
bour, unless usingpoly2nb() there are islands with no shared boundaries with other
polygons. However, it seems all too easy to generate neighbour lists with no-neighbour
tracts usingdnearneigh() , even though distance between points representing objects
might be taken as the most natural way of expressing their mutual positions.

4 Spatial autocorrelation

Before we get to estimating Moran’sI for the raw disease rate, let us stop to consider
how to get from the representation of neighbour relations that we have constructed
as neighbour list objects to the spatial weights needed to estimate the statistic. The
function used to do this isnb2listw() , which has to take at least one argument, a
neighbour list object, and returns alistw object.

> args(nb2listw)

function (neighbours, glist = NULL, style = "W", zero.policy = FALSE)
NULL

> lw.viz <- nb2listw(viz)
> lw.viz

Characteristics of weights list object:
Neighbour list object:
Number of regions: 241
Number of nonzero links: 1324
Percentage nonzero weights: 2.279575
Average number of links: 5.493776

Weights style: W
Weights constants summary:

n nn S0 S1 S2
W 241 58081 241 93.57845 1007.857

Objects of classlistw have aneighbours component, which is the same as the
neighbour list argument, and aweights component, which follows the same pattern
as theneighbours component, but contains the actual values of the non-zero weights.
An argument that matters sometimes both here and in functions usinglistw objects
is thezero.policy argument. When it isFALSE (default), the function exits with an
error message if no-neighbour tracts are found. If it isTRUE, zero “rows” are permitted
in the weights component, meaning that zero will be assigned for that row to the
product of any vector and thelistw object. Further, different styles are defined for
listw objects, where"W" is the default row-standardised form (with rows of weights
summing to unity),"B" is used for binary 0/1 weights, and"S" is for the variance-
stabilizing coding scheme proposed by Tiefelsdorf et al. (1999) — for further details on
these schemes see the help page fornb2listw() . Finally, there is aglist argument
for passing general weights values into the function; we will return to this later.

> moran.test(pm$raw, nb2listw(viz, style = "W"))
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Moran’s I test under randomisation

data: pm$raw
weights: nb2listw(viz, style = "W")

Moran I statistic standard deviate = 10.0853, p-value = < 2.2e-16
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance

0.393147809 -0.004166667 0.001551989

> moran.test(pm$raw, nb2listw(viz, style = "B"))

Moran’s I test under randomisation

data: pm$raw
weights: nb2listw(viz, style = "B")

Moran I statistic standard deviate = 10.0156, p-value = < 2.2e-16
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance

0.376768961 -0.004166667 0.001446604

> moran.test(pm$raw, nb2listw(viz, style = "S"))

Moran’s I test under randomisation

data: pm$raw
weights: nb2listw(viz, style = "S")

Moran I statistic standard deviate = 10.1664, p-value = < 2.2e-16
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance

0.386051749 -0.004166667 0.001473261

The results of testing the estimates of Moran’sI statistic under randomisation with
different weighting styles (among which there are few differences) show that spatial
dependence is present in the data. It is very unlikely that the patterns we can see could
have arisen at random. But we do not know why neighbouring tracts seem to be similar
to each other in raw rates.

When contagion is a direct cause, it is reasonable to interpret the spatial depen-
dence as resulting from proximity. But it is also very possible that the boundaries of
the tracts are arbitrarily imposed on more complex social patterns, so that a district of
the city which otherwise appears as a well-connected and functioning whole, is repre-
sented by multiple neighbouring tracts in the data - hence leading us to think that the
data are spatially autocorrelated when they are perhaps not much more than arbitrarily
aggregated. Only knowledge of the study area can help here. When, however, the tracts
are for instance health station districts, and the variables of interest can be related to
the actions of the “subject” of the district — the staff of the health station — such as
a study of the impact of preventive measures, autocorrelation may indicate flows of
information (once background variables have been taken into account).

> dists <- nbdists(viz, subsetor.cents)
> invdists <- lapply(dists, function(x) 1/x)
> moran.test(pm$raw, nb2listw(viz, glist = invdists, style = "W"))

Moran’s I test under randomisation

data: pm$raw
weights: nb2listw(viz, glist = invdists, style = "W")

14



Moran I statistic standard deviate = 9.6142, p-value = < 2.2e-16
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance

0.402103625 -0.004166667 0.001785673

Another variation is to use general weights, in this case inverse distance weights. Recall
that the"W" style will row-standardise the weights anyway, but this approach will give
nearer neighbours a larger share of the weights in each case. The conclusion remains
unchanged.

> moran.test(pm$raw, nb2listw(olinda.nb2, style = "W"))

Moran’s I test under randomisation

data: pm$raw
weights: nb2listw(olinda.nb2, style = "W")

Moran I statistic standard deviate = 7.1662, p-value = 3.855e-13
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance

0.403312954 -0.004166667 0.003233183

> moran.test(pm$raw, nb2listw(olindasoi.nb, style = "W"))

Moran’s I test under randomisation

data: pm$raw
weights: nb2listw(olindasoi.nb, style = "W")

Moran I statistic standard deviate = 9.2476, p-value = < 2.2e-16
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance

0.396213892 -0.004166667 0.001874497

It is still unchanged after trying two more neighbour lists. The raw rates are obviously
very similar across tract boundaries. We can go on to see what happens when we step
out across the neighbours list, to look at second — neighbours of neighbours — and
higher order relationships in a correlogram.

> cg.I <- sp.correlogram(viz, pm$raw, order = 8, method = "I")
> print(cg.I)

Spatial correlogram for pm$raw
method: Moran’s I

estimate expectation variance
1 0.39314781 -0.004166667 0.0015519894
2 0.31917859 -0.004166667 0.0006809378
3 0.26431254 -0.004166667 0.0004267140
4 0.20545206 -0.004166667 0.0003200714
5 0.11205115 -0.004166667 0.0002761596
6 0.03672393 -0.004166667 0.0002555164
7 -0.05056479 -0.004166667 0.0002483865
8 -0.10716380 -0.004166667 0.0002996402

> plot(cg.I, main = "")

The tabular results of still substantial but declining dependence are plotted in Figure
10. Unlike time series, the numbers of higher-order neighbours do increase until the
study area is exhausted, which will necessarily bring higher-order estimates down —
there is not much reason to see the highest order negative autocorrelation as more than

15



−
0.

1
0.

1
0.

3

lags

M
or

an
’s

 I

1 2 3 4 5 6 7 8

Figure 10: Correlogram of Moran’sI values for raw rates up to 8 contiguity lags.
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Figure 11: Moran scatterplot of raw rate values.
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a reflection of most higher raw rates being in the south and west of the city, and most
lower rates being along the coast in the east and in the north.

It is time to look a little more closely at the way in which the global Moran’sI
test works. It is actually a measure of correlation between the variable of interest, here
the raw disease rate, and the “spatially lagged” values. In the case of row-standardised
spatial weights, the “spatially lagged” values are the weighted average of the values of
the tracts surrounding each tract, and can be plotted as a scatterplot, shown in Figure
11. In addition, Moran’sI is a linear measure, with all the benefits and drawbacks this
involves.

> infl <- moran.plot(pm$raw, nb2listw(viz, style = "W"), cex = 0.5,
+ quiet = TRUE)

> infl.region <- as.integer(apply(infl$is.inf, 1, any)) + 1
> summary(card(viz))

Min. 1st Qu. Median Mean 3rd Qu. Max.
2.000 4.000 5.000 5.494 6.000 16.000

> by(card(viz), infl.region, summary)

INDICES: 1
Min. 1st Qu. Median Mean 3rd Qu. Max.

2.000 4.000 5.000 5.511 6.500 16.000
------------------------------------------------------------
INDICES: 2

Min. 1st Qu. Median Mean 3rd Qu. Max.
3.000 4.000 5.000 5.278 6.000 9.000

> cols <- c("azure", "powderblue")

> plot(subsetor.polys, border = "grey", col = cols[infl.region])
> text(subsetor.cents[infl.region == 2, ], labels = subsetor$SET[infl.region ==
+ 2], cex = 0.8)

One of the drawbacks is that some observations may influence the outcome very much
more than others. Fitting a linear model to the scatterplot (by convention displayed
in this way), we can see from Figure 11 that some points have been distinguished.
Themoran.plot() function calls theinfluence.measures() function on thelm

model object represented on the plot by the fitted line. Several measures of influence
are used, and points are marked if any of the thresholds set by default ininfluence.measures()

are exceeded. By storing the output ofmoran.plot() , we can determine which tracts
are exerting more than proportional influence on Moran’sI , and map them as shown
in Figure 12. In addition, we can check whether there is any relationship between the
numbers of neighbours that tracts possess (thecard() function returns the cardinal-
ity of the neighbour set), and whether they exert more than proportional influence —
typically, tracts on the edge of the study area will have fewer neighbours, because a
part of their boundaries are study area boundaries. If there are large differences in the
distributions of numbers of neighbours between the two influence classes, that would
suggest that geometry is affecting the result.

> args(localmoran)

function (x, listw, zero.policy = FALSE, na.action = na.fail,
spChk = NULL)

NULL

> resI <- localmoran(pm$raw, nb2listw(viz, style = "W"))
> summary(resI[, "Z.Ii"])

Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.81000 0.01287 0.45620 0.91860 1.05800 14.62000

18



Figure 12: Tracts with significant influence in Moran scatterplot.
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> round(quantile(resI[, "Z.Ii"], prob = seq(0, 1, 1/10)), digits = 3)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
-2.810 -0.315 -0.043 0.080 0.264 0.456 0.715 0.942 1.360 2.011 14.624

> by(card(viz), abs(resI[, "Z.Ii"]) > 2, summary)

INDICES: FALSE
Min. 1st Qu. Median Mean 3rd Qu. Max.

2.000 4.000 5.000 5.519 6.750 16.000
------------------------------------------------------------
INDICES: TRUE

Min. 1st Qu. Median Mean 3rd Qu. Max.
3.000 4.000 5.000 5.296 6.000 10.000

There are two functions inspdep for calculating local Moran’sI as local indicators
of spatial association. The first —localmoran() is similar in its form to the global
measure, and provides estimates of the standard deviate of the measure under randomi-
sation. No probability values are provided, but they can be obtained using the usual
pnorm() function. It should however be remembered that here we are making multi-
ple tests using the same data — we are calculating a test statistic for each tract, using the
values from neighbouring tracts multiple times. It is possible to use thep.adjust()

function to alter the probability levels if desired.

> args(localmoran.sad)

function (model, select, nb, glist = NULL, style = "W", zero.policy = FALSE,
alternative = "greater", spChk = NULL, save.Vi = FALSE)

NULL

> resI <- localmoran.sad(lm(pm$raw ~ 1), 1:length(viz), viz, style = "W")
> reslI <- as.data.frame(resI, row.names = subsetor$SET)
> summary(reslI$Saddlepoint)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.21600 0.01286 0.68520 0.73800 1.25300 5.49300

> round(quantile(reslI$Saddlepoint, prob = seq(0, 1, 1/10)), digits = 3)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
-2.216 -0.510 -0.085 0.126 0.423 0.685 0.963 1.163 1.466 1.846 5.493

> by(card(viz), abs(reslI$Saddlepoint) > 2, summary)

INDICES: FALSE
Min. 1st Qu. Median Mean 3rd Qu. Max.

2.000 4.000 5.000 5.511 6.500 16.000
------------------------------------------------------------
INDICES: TRUE

Min. 1st Qu. Median Mean 3rd Qu. Max.
3.000 4.000 5.000 5.318 6.000 10.000

One difficulty in local indicators is that each test is being made on a neighbourhood
with very few observations, in which case the distribution of local Moran’sI may di-
verge a good deal from the Normal. One possible solution to this is to use a Saddlepoint
estimate of the standard deviate of the statistic, as implemented inlocalmoran.sad() .
This function takes anlm object as its first argument — typically a model with just the
intercept term —, a vector of spatial unit indices for which to calculate the statistic —
here all of them, a neighbour list object, and the weighting style to use. Internally, it
generates a symmetric“star” weights matrix for each selected spatial unit, and so needs
access just to the neighbours list.

> brks <- rev(round(qnorm(c(1, 0.999, 0.99, 0.975, 0.025, 0.01,
+ 0.001, 0)), 3))
> cols <- cm.colors(7)
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> plot(subsetor.polys, col = cols[findInterval2(reslI$Saddlepoint,
+ brks)])
> legend(c(289000, 291000), c(9112000, 9114000), fill = cols, bty = "n",
+ legend = leglabs(brks, "<", ">="), cex = 0.9, y.intersp = 0.9)

The use of the unadjusted Normal quantiles in the class intervals and legend of Figure
13 is informal, and simply provided an indication of which neighbour relations seem to
be driving the localised dependency pattern. Untangling the global pattern — assumed
to apply across the whole study area, and used both in global tests and in modelling be-
low — from local spatial association is difficult, and may require good field knowledge
of background variables as well.

Figure 13: Local Moran’sI Saddlepoint estimates

5 Assumptions about rates variables

So far, we have been modelling a raw rate variable, constructed from two separate
variables, the incidence counts and the numbers of population at risk. It is however
clear that rates may be unusually extreme in tracts with low populations at risk.

> names(pm)
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[1] "raw" "expCount" "relRisk" "pmap"

> brks <- rev(c(1, 0.999, 0.99, 0.975, 0.025, 0.01, 0.001, 0))
> cols <- cm.colors(7)

> plot(subsetor.polys, col = cols[findInterval2(pm$pmap, brks)])
> legend(c(289000, 291000), c(9112000, 9114000), fill = cols, bty = "n",
+ legend = leglabs(brks, "<", ">="), cex = 0.9, y.intersp = 0.9)

One approach, called probability mapping, is to use theppois() function to compare
the observed counts with the expected count expressed as the population in the tract
multiplied by the raw rate for the study area as a whole. This measure is implemented
in probmap , which also returns the raw rate for each tract, the expected count, the
relative risk, and the probability map values. The latter are reported in Figure 14.
These differ from the first definitions of probability maps, because the sign is reflected
in the tail of the legend — in the original representation, the tails were folded together,
which was perhaps more meaningful in numerical terms in relation to the probabilities,
but more difficult to visualise.

Figure 14: Probability map of Hansen’s Disease rates in Olinda.

> args(EBlocal)

function (ri, ni, nb, zero.policy = FALSE, spChk = NULL, geoda = FALSE)
NULL
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> rate.bayes <- EBlocal(subsetor$CASES, subsetor$POP, viz)
> brks <- round(quantile(1000 * pm$raw), digits = 2)
> cols <- rev(gray(2:5/6))

> plot(subsetor.polys, col = cols[findInterval2(rate.bayes$est *
+ 1000, brks)])
> legend(c(289000, 291000), c(9112000, 9114000), fill = cols, bty = "n",
+ legend = leglabs(brks, "<", ">="), cex = 0.9, y.intersp = 0.9)

It is also possible to use local and global Empirical Bayes estimates of the rates,
“shrinking” the estimated rate towards the local or global values when the popula-
tion at risk is small (and so our estimate of the actual rate is much less certain than in
tracts with larger populations). Local Empirical Bayes rates estimates are calculated
usingEBlocal() , which, like localmoran.sad() above, takes a neighbour list, not
a weights list argument. Weighting styles are not available for this function, which
depends on being able to count sums of cases and populations at risk for local sets of
neighbours. The results of estimating local Empirical Bayes rates are shown in Figure
15, which can be compared with the map of the raw rates (Figure 7)

Figure 15: Local Empirical Bayes estimates of rates.

Finally, we can calculate a version of Moran’sI for rates, based on Empirical Bayes
correction of the rate; the result is assessed by permuting the Empirical Bayes estimates
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about the map to see how likely it is that the observed pattern could have arisen at
random.

> EBImoran.mc(subsetor$CASES, subsetor$POP, nb2listw(viz, style = "B"),
+ nsim = 999)

Monte-Carlo simulation of Empirical Bayes Index

data: cases: subsetor$CASES, risk population: subsetor$POP
weights: nb2listw(viz, style = "B")
number of simulations + 1: 1000

statistic = 0.3781, observed rank = 1000, p-value = 0.001
alternative hypothesis: greater

6 Modelling

It seems possible that there is a relationship between the levels of social deprivation
aggregated to the tract level, and the rates of disease, again aggregated to the tract
level. A suitable tool for approaching this modelling situation is to use a Generalised
Linear Model, in this case with a quasi-Poisson family argument value (it seems that
overdispersion is present, so the Poisson family is not as appropriate).

> CASES.glm <- glm(CASES ~ DEPRIV + offset(log(POP)), family = "quasipoisson",
+ data = subsetor)
> anova(CASES.glm, test = "F")

Analysis of Deviance Table

Model: quasipoisson, link: log

Response: CASES

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev F Pr(>F)
NULL 240 1212.48
DEPRIV 1 115.87 239 1096.61 23.018 2.827e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> infl <- influence.measures(CASES.glm)
> infl.region <- as.integer(apply(infl$is.inf, 1, any)) + 1
> cols <- c("azure", "powderblue")

> plot(subsetor.polys, border = "grey", col = cols[infl.region])
> text(subsetor.cents[infl.region == 2, ], labels = subsetor$SET[infl.region ==
+ 2], cex = 0.8)

While it seems that the deprivation variable has reduced residual deviation somewhat,
we can still note from Figure 16 that some tracts are exerting more influence on the
model fit than others, and that at least some of these were noticably present in earlier
figures.

> pres <- influence(CASES.glm)$pear.res
> brks <- rev(round(qt(c(1, 0.999, 0.99, 0.975, 0.025, 0.01, 0.001,
+ 0), df = df.residual(CASES.glm)), 3))
> cols <- cm.colors(7)

> plot(subsetor.polys, col = cols[findInterval2(pres, brks)])
> legend(c(289000, 291000), c(9112000, 9114000), fill = cols, bty = "n",
+ legend = leglabs(brks, "<", ">="), cex = 0.9, y.intersp = 0.9)
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Figure 16: Tracts with significant influence in Quasi-Poisson model fit.
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When we plot the Pearson residuals of the quasi-Poisson fit (Figure 17), we can also
see that essentially the same spatial pattern is present here as was in the raw rates and
the local Empirical Bayes estimates. If social deprivation had had a strong impact,
we would not expect to see the same pattern repeat itself. As yet, there are no tests
available for spatial dependence in the residuals of GLM model fits, so we proceed by
transforming the dependent variable to a log rate, and by estimating a linear model.

Figure 17: Map of Pearson residuals from the Quasi-Poisson model fit.

> logtx <- log((subsetor$CASES + 1)/subsetor$POP)
> logtx.lm <- lm(logtx ~ DEPRIV, data = subsetor)
> summary(logtx.lm)

Call:
lm(formula = logtx ~ DEPRIV, data = subsetor)

Residuals:
Min 1Q Median 3Q Max

-2.22611 -0.53020 0.06585 0.56223 1.72346

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.1487 0.1027 -59.844 < 2e-16 ***
DEPRIV 1.3771 0.2482 5.547 7.67e-08 ***
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---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7977 on 239 degrees of freedom
Multiple R-Squared: 0.1141, Adjusted R-squared: 0.1104
F-statistic: 30.77 on 1 and 239 DF, p-value: 7.671e-08

> anova(logtx.lm)

Analysis of Variance Table

Response: logtx
Df Sum Sq Mean Sq F value Pr(>F)

DEPRIV 1 19.579 19.579 30.773 7.671e-08 ***
Residuals 239 152.063 0.636
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> pres <- residuals(logtx.lm)
> brks <- round(quantile(pres, prob = seq(0, 1, 1/6)), digits = 2)
> cols <- rev(gray(2:7/8))

> plot(subsetor.polys, col = cols[findInterval2(pres, brks)])
> legend(c(289000, 291000), c(9112000, 9114000), fill = cols, bty = "n",
+ legend = leglabs(brks, "<", ">="), cex = 0.9, y.intersp = 0.9)

Once again, it appears that deprivation is important in the estimated model, but the map
of model residuals shown in Figure 18 again appears very familiar — the residuals seem
to have a clear spatial pattern.

When we apply a version of Moran’sI for linear model residuals, we find that they
are clearly spatially autocorrelated, and that the estimates of the coefficient standard
errors are therefore too small. But Moran’sI is a very general test for mis-specification,
and also detects non-stationarity.

> lm.morantest(logtx.lm, nb2listw(viz, style = "W"))

Global Moran’s I for regression residuals

data:
model: lm(formula = logtx ~ DEPRIV, data = subsetor)
weights: nb2listw(viz, style = "W")

Moran I statistic standard deviate = 6.7822, p-value = 5.918e-12
alternative hypothesis: greater
sample estimates:
Observed Moran’s I Expectation Variance

0.261308746 -0.006260090 0.001556432

So we also use two robust tests that accommodate alternative nuisance parameters for
the spatial error and spatial lag models. The robust error test tests for the possible
presence of spatial autocorrelation in the error term in the presence of a spatial lag
term; the robust spatial lag test does the reverse.

> lm.LMtests(logtx.lm, nb2listw(viz, style = "W"), test = c("RLMerr",
+ "RLMlag"))

Lagrange multiplier diagnostics for spatial dependence

data:
model: lm(formula = logtx ~ DEPRIV, data = subsetor)
weights: nb2listw(viz, style = "W")

RLMerr = 4.5921, df = 1, p-value = 0.03212
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Figure 18: Map of residuals from the linear model fit of transformed dependent vari-
able.
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Lagrange multiplier diagnostics for spatial dependence

data:
model: lm(formula = logtx ~ DEPRIV, data = subsetor)
weights: nb2listw(viz, style = "W")

RLMlag = 17.7724, df = 1, p-value = 2.490e-05

As we can see, the robust spatial lag test statistic (distributed asχ2 with 1 degree of
freedom) has a much higher value than the robust spatial error test, suggesting that the
spatially lagged value of the dependent variable should be included in the model. We
estimate three versions of the spatial lag model (using simultaneous autoregression —
SAR), one with just the intercept term, one including the social deprivation variable,
and finally a spatial Durbin model also including the spatially lagged social deprivation
variable.
> ltx0.lsar <- lagsarlm(logtx ~ 1, listw = nb2listw(viz), type = "lag",
+ method = "eigen")

> ltx0.lsar

Call:
lagsarlm(formula = logtx ~ 1, listw = nb2listw(viz), type = "lag",

method = "eigen")
Type: lag

Coefficients:
(Intercept) rho

-2.4539643 0.5685345

Log likelihood: -270.163

> ltx1.lsar <- lagsarlm(logtx ~ DEPRIV, data = subsetor, type = "lag",
+ listw = nb2listw(viz), method = "eigen")

> ltx1.lsar

Call:
lagsarlm(formula = logtx ~ DEPRIV, data = subsetor, listw = nb2listw(viz),

type = "lag", method = "eigen")
Type: lag

Coefficients:
(Intercept) DEPRIV rho

-3.118961 0.724765 0.496563

Log likelihood: -265.5303

> ltx2.lsar <- lagsarlm(logtx ~ DEPRIV, data = subsetor, type = "mixed",
+ listw = nb2listw(viz), method = "eigen")

> ltx2.lsar

Call:
lagsarlm(formula = logtx ~ DEPRIV, data = subsetor, listw = nb2listw(viz),

type = "mixed", method = "eigen")
Type: mixed

Coefficients:
(Intercept) DEPRIV lag.DEPRIV rho

-3.6673153 0.2089467 1.1846246 0.4417988

Log likelihood: -261.829
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Model output includes the fitted parameter values, including the value of the spatial lag
parameterρ, and the log likelihood value of the fitted model.

> anova(ltx0.lsar, ltx1.lsar, ltx2.lsar)

Model df AIC logLik Test L.Ratio p-value
ltx0.lsar 1 3 546.3260 -270.1630 NA NA
ltx1.lsar 2 4 539.0605 -265.5303 1 vs 2 9.265476 0.002335138
ltx2.lsar 3 5 533.6580 -261.8290 2 vs 3 7.402510 0.006513294

> anova(ltx2.lsar, logtx.lm)

Model df AIC logLik Test L.Ratio p-value
ltx2.lsar 1 5 533.6580 -261.8290 NA NA
logtx.lm 2 3 578.9471 -286.4735 1 vs 2 49.28905 1.981615e-11

These models are compared using ananova() function, first between the three spatial
lag models — showing that including both DEPRIV and the spatial lag of DEPRIV
improve the fit of the model, as measured by the likelihood ratio test. The spatial
Durbin model also has the best Akaike Information Criterion (AIC) value. There is a
big difference between the linear model and the spatial Durbin model, but note that the
spatial lag model with just the intercept term outperforms the linear model including
the social deprivation variable, both in terms of AIC and comparing log likelihood
values.

> ltx2.esar <- errorsarlm(logtx ~ DEPRIV, data = subsetor, listw = nb2listw(viz),
+ method = "eigen")

> ltx2.esar

Call:
errorsarlm(formula = logtx ~ DEPRIV, data = subsetor, listw = nb2listw(viz),

method = "eigen")
Type: error

Coefficients:
(Intercept) DEPRIV lambda

-5.8944328 0.5963067 0.5116436

Log likelihood: -268.3350

> AIC(ltx2.esar)

[1] 544.6701

> LR.sarlm(ltx2.lsar, ltx2.esar)

Likelihood ratio for spatial linear models

data:
Likelihood ratio = 13.012, df = 1, p-value = 0.0003095
sample estimates:
Log likelihood of ltx2.lsar Log likelihood of ltx2.esar

-261.8290 -268.3350

Just to check, we estimate the spatial error model including the DEPRIV variable (lag
and error with just the intercept are equivalent) too, and find that on log-likelihood
comparison and AIC values, the spatial lag models seem to give a better fit than the
spatial error models. The likelihood ratio test reported is used informally, because the
models are not nested as such, although here the spatial error model is equal to the
spatial Durbin model when constraints on the parameter estimates are met — here they
are not.

> summary(ltx2.lsar)
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Call:
lagsarlm(formula = logtx ~ DEPRIV, data = subsetor, listw = nb2listw(viz),

type = "mixed", method = "eigen")

Residuals:
Min 1Q Median 3Q Max

-2.108455 -0.466208 0.021365 0.554197 1.590469

Type: mixed
Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.66732 0.51831 -7.0755 1.489e-12
DEPRIV 0.20895 0.30166 0.6927 0.488522
lag.DEPRIV 1.18462 0.43654 2.7137 0.006654

Rho: 0.4418 LR test value: 30.827 p-value: 2.8205e-08
Asymptotic standard error: 0.078559 z-value: 5.6238 p-value: 1.8679e-08
Wald statistic: 31.627 p-value: 1.8679e-08

Log likelihood: -261.829 for mixed model
ML residual variance (sigma squared): 0.49372, (sigma: 0.70265)
Number of observations: 241
Number of parameters estimated: 5
AIC: 533.66, (AIC for lm: 562.49)
LM test for residual autocorrelation
test value: 11.046 p-value: 0.00088899

> pres <- residuals(logtx.lm)
> brks <- round(quantile(pres, prob = seq(0, 1, 1/6)), digits = 2)

> plot(subsetor.polys, col = cols[findInterval2(pres, brks)])
> legend(c(289000, 291000), c(9112000, 9114000), fill = cols, bty = "n",
+ legend = leglabs(brks, "<", ">="), cex = 0.9, y.intersp = 0.9)

Finally, we can examine the output ofsummary() of the spatial Durbin model, and
see that the social deprivation variable is no longer significant — while its spatial lag
is, in terms of asymptotic standard errors. The likelihood ratio test onρ compares the
log likelihoods of the fitted spatial Durbin model and the equivalent linear model with
no spatially lagged dependent variable. A similar comparison is available using the
AIC values of this fit, and the linear model fit holdingρ = 0. At the foot of the output,
the results of a Lagrange Multiplier test for residual autocorrelation for this model are
presented — there is still a lot of spatial dependence present here, as we can also see
from the map of the spatial Durbin model residuals in Figure 19.

At least we have been able to find that any relationship between the social depri-
vation variable and the log rate variable is not as simple as perhaps might have been
thought. It is at least possible that there are different kinds of spatial dependence in
different parts of the city — known as spatial regimes, or that there are more general
mis-specification problems, such as non-stationarity. Modelling is in general much
more demanding than visualisation, and in this case it may be that the social depri-
vation index is too compacted, containing perhaps data that in essence is multivariate
rather than univariate. It is of course also possible that the population numbers reflect
heterogeneity in levels of risk, even given levels of social deprivation, and finally, some
or many of the tracts may be poorly bounded with respect to the underlying social and
health-related phenomena being observed.
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Figure 19: Map of residuals from the simultaneous autoregressive "Durbin" model fit
of the transformed dependent variable.
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