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Introduction



Introduction

• Spatial data involves choices in defining units of observation, and possible spillovers
between proximate observations; independence should not be assumed.

• From work examining machine learning implementations applied to spatial data, it has
been reported that model selection is affected by any lack of independence, and that
aspatial models used for training may be insufficient when the training data shows spatial
processes

• The Ames house price data set used for assessing the value of properties is affected by
spatial autocorrelation, where both the choice of training/test set splits and of
appropriate models need attention

• Slides and source at: https://rsbivand.github.io/nem24_talk
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Why is spatial data special?



Observations in space

• Nearness in space and the fluid assignment of boundaries between observations may
affect our view of how many valid observations have been made.

• Is 𝑛 really 𝑛 or some reduced number reflecting the common origins of the data reported?

• The units of observation chosen may not address important sources of variation in the
response.

• Kendall (1939) analysed crop productivity in England by crop counties for which data were
readily available, but was criticised for not using soil or climate classifications instead
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Student’s view

• Assuming that the spatial units of observation are accepted as given, spurious correlation
due to position may arise from unobserved spillover between nearby observations

• Student (1914) touches briefly on agricultural trial plots in describing this aspect of the
problem as treatments may leach between neighbouring plots.

• He had been concerned in several contexts with the effective degrees of freedom of a
collection of observations.

• Positive spillover, leading to more likeness between neighbours, would clearly reduce the
effective count of independent observations.
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Bunch of grapes

• Stephan (1934) gives us a powerful picture of the problem:

• Data of geographic units are tied together, like bunches of grapes, not separate, like balls
in an urn. Of course mere contiguity in time and space does not of itself indicate lack of
independence between units in a relevant variable or attribute, but in dealing with social
data, we know that by virtue of their very social character, persons, groups and their
characteristics are interrelated and not independent. (Stephan 1934, 165)
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Spatial autocorrelation

• Tobler expresses his view, perhaps the view that is most often cited in discussing spatial
data, in this way:

• … the first law of geography: everything is related to everything else, but near things are
more related than distant things. (Tobler 1970, 236)
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Spatial autocorrelation signalling model mis-specification

• However, Olsson (1970) asks whether the unquestioning application of the ubiquity of
spatial autocorrelation, as the only lens through which to view spatial data, is wise:

• The existence of such autocorrelations makes it tempting to agree with Tobler (1970, 236)
that ‘everything is related to everything else, but near things are more related than distant
things.’ On the other hand, the fact that the autocorrelations seem to hide systematic
specification errors suggests that the elevation of this statement to the status of ‘the first
law of geography’ is at best premature. At worst, the statement may represent the spatial
variant of the post hoc fallacy, which would mean that coincidence has been mistaken for
a causal relation. (Olsson 1970, 228; cf. Pebesma and Bivand 2023, 210)
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Economic and social research
questions using spatial data



Spatial confounding

• Spatial autocorrelation might be addressed by estimating the spatial structure in the
residual term.

• Pace and LeSage (2008) point to a worrying problem encountered when the estimated
coefficients of an aspatial regression model and those of a spatial regression model
including such an estimated spatial structure diverge.

• This may occur when omitted independent variables are “picked up” by spatially
autocorrelated residuals, and they propose a Hausman test to check such divergence
where possible.

• This observation is very similar to that seen in disease mapping, from initial reports by
Reich, Hodges, and Zadnik (2006) and Hodges and Reich (2010), termed spatial
confounding, and recently actively pursued by Zimmerman and Hoef (2022), Dupont, Wood,
and Augustin (2022), Urdangarin, Goicoa, and Ugarte (2022) and Wolf (2024). 8



Spatial diff-in-diff

• Delgado and Florax (2015) draw on Rubin (1974); Rubin (1978) to highlight the risk posed to
the stable unit treatment value assumption (SUTVA) by unmodelled spatial dependency in
the data.

• This key assumption for causal alaysis “ implies that potential outcomes for person 𝑖 are
unrelated to the treatment status of other individuals” (Angrist, Imbens, and Rubin 1996).
The assumption and the risk of its violation when spatial data is modelled aspatially is
also discussed at that time by Koschinsky (2013) and Baylis and Ham (2015).

• Work by Delgado and Florax (2015) has been followed up by Bardaka, Delgado, and Florax
(2018) and Bardaka, Delgado, and Florax (2019), showing practically how a
difference-in-difference econometric design measuring the impact of change on a chosen
dependent variable. Dubé et al. (2014) approach spatial difference-in-difference in a
similar way, followed up in Dubé et al. (2017) and Dubé, AbdelHalim, and Devaux (2021).
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Causality

• Three important surveys of causality in spatial data analysis have appeared recently: Kolak
and Anselin (2020), Gao et al. (2022), and Akbari, Winter, and Tomko (2023).

• All of these take up spatial challenges to the stable unit treatment value assumption,
Kolak and Anselin (2020) with an example of the impact of changes in minimum legal
drinking age laws on mortality for US states.

• Gao et al. (2022) point to the rapid extension of spatial statistics to other knowledge
domains including bioinformatics, in which causal inference is clearly important.

• The main use cases considered by Akbari, Winter, and Tomko (2023) are in spatial cognition,
including wayfinding processes and navigation systems, because these are so much
broader in impact than program evaluations.
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Spatial autocorrelation and machine learning i

• Kattenborn et al. (2022) study the impact of spatial autocorrelation on the training of
convolutional neural networks for data acquired by drones, and find:

• Our results suggest that violating spatial independence between training and test data
can severely inflate model apparent performance (up to almost 30%) and, hence, lead to
an overly optimistic evaluation of the generalization of such models. (Kattenborn et al.
2022, 7)

• This observation, that the violation of the assumption of spatial independence between
training, validation and test data sets prejudices outcomes, has been recognised in much
of spatial data science for years, at least from Brenning (2012).
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Spatial autocorrelation and machine learning ii

• Kopczewska (2022) summarises the current research position with regard to spatial data
use in machine learning in this way:

• It is clear from many studies that unaddressed spatial autocorrelation generates problems,
such as overoptimistic fit of models, omitted information and/or biased (suboptimal)
prediction. Thus, an up-to-date toolbox dealing with spatial autocorrelation should be
used in all ML models in order to ensure methodological appropriateness. (Kopczewska
2022, 732)

• Wagner and Zeileis (2019) use model-based recursive partitioning handling the spatial
dependencies by including the spatially lagged dependent variable in a spatial
econometric model to study heterogeneous growth.
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Spatial autocorrelation and machine learning iii

• Vidoli, Pignataro, and Benedetti (2022) approach heterogeneity through spatial regimes
(clusters of observations in covariate and/or geographical space), as do Piras and Sarrias
(2023); all three articles are backed by software.

• Mahoney et al. (2023) and Mahoney (2023a) discuss the performance of some tools for
exploring how to handle spatial information spillovers in machine learning in the
tidymodels setting.

• Schratz et al. (2019) and Schratz et al. (2022) cover similar ground, focussed more on
ecological data, for the mlr setting.
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Spatial autocorrelation and machine learning iv

• Meyer et al. (2019), Meyer and Pebesma (2021), Meyer and Pebesma (2022), Mila et al. (2022)
and Linnenbrink et al. (2023) develop these issues with application to ecological and
environmental data, often for the detection of change in earth observation data for which
units of observation are given by the satellite-borne instruments.
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Anaysis of the Ames housing data set



The Ames housing data set

• De Cock (2011) proposes to replace the Boston housing value data set dating from the
1970’s (for a deconstruction, see Bivand (2017)) as more relevant to teaching this century.

• The Ames house sale price data set contains 2930 observations (2006-2010), and many
explanatory variables used for assessing home values, and is used extensively in Kuhn and
Silge (2022).

• Kuhn and Silge (2022) do mention the spatial nature of the data, presenting maps, but
assert that it is safe to assume that, statistically, the data from a property are independent
of other properties (Section 5.3); the current edition pre-dates Mahoney et al. (2023) and
Mahoney (2023a).

• The data is available for R in the modeldata package (Kuhn 2024).
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Moran’s 𝐼

Moran’s 𝐼 is given as (Cliff and Ord 1981, 17):

𝐼 =
𝑛 ∑(2) 𝑤𝑖𝑗𝑧𝑖𝑧𝑗

𝑆0 ∑𝑛
𝑖=1 𝑧2

𝑖

where 𝑥𝑖, 𝑖 = 1, … , 𝑛 are 𝑛 observations on the numeric variable of interest, 𝑧𝑖 = 𝑥𝑖 − ̄𝑥,

̄𝑥 = ∑𝑛
𝑖=1 𝑥𝑖/𝑛, ∑(2) =

∑𝑛
𝑖=1 ∑𝑛

𝑗=1

𝑖 ≠ 𝑗 , 𝑤𝑖𝑗 are the spatial weights, and 𝑆0 = ∑(2) 𝑤𝑖𝑗. A
comparison of implementations of measures of spatial autocorrelation shows that a wide range
of measures is available in R in a number of packages, chiefly in the spdep package, and that
differences from other implementations can be attributed to design decisions (Bivand and
Wong 2018). The spdep package also includes the only implementations of exact and Saddlepoint
approximations to global Moran’s I (Tiefelsdorf 2002; Bivand, Müller, and Reder 2009).
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Moran’s 𝐼

When the spatial weights are row-standardised:

∑
𝑗=1

𝑤𝑖𝑗 = 1, ∀𝑖

𝑛 = 𝑆0 and 𝐼 simplifies to:

𝐼 = z⊤Wz
z⊤z

which will be useful later.
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How safe is the assumption of independence between properties?

Taking 𝑘 = 10 nearest neighbours on the sphere of Ames properties (Pebesma 2024; Bivand
2024), and Moran’s 𝐼 test for spatial autocorrelation (for references see Bivand and Wong 2018;
Pebesma and Bivand 2023; Bivand 2024), we see that it is most unlikely that the assumption
holds for the logarithm of sale price:

Moran I statistic standard deviate = 90.057, p-value < 2.2e-16

alternative hypothesis: two.sided
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How safe is the assumption of independence between properties?

If we rather take the residuals from a linear model of the logarithm of sale price taking all the
explanatory variables in the data set, the positive spatial autocorrelation remains very strong:

Moran I statistic standard deviate = 11.257, p-value < 2.2e-16

alternative hypothesis: two.sided
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How safe is the assumption of independence between properties?

Even taking the exact Moran’s 𝐼 test for regression residuals (Bivand, Müller, and Reder 2009),
residual autocorrelation is very evident:

Exact standard deviate = 8.1259, p-value = 4.441e-16

alternative hypothesis: two.sided
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Data splitting

Splitting the data into training and testing sets at random (setting the RNG seed and running
rsample::initial_split(ames, prop = 0.8)) (Frick et al. 2024) and fitting the same linear model
using all the explanatory variables, we can assess the differences between the logarithm of sale
price and the predictions made from the linear model fitted on the training set with respect to
spatial autocorrelation, for the combined stacked training and test sets (watching for aliased
coefficients), using waywiser::ww_global_moran_i_vec, keeping to the 𝑘 = 10 neighbour definition
(Mahoney 2023b); note that the presence of spatial autocorrelation may impact other model
evaluation criteria like RMSE (what is 𝑛 really?):

[1] 0.07085727
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Decomposing 𝐼

We can order 𝑧 and 𝑊 to create a 2 × 2 table of denominator compoments of 𝐼 from:

𝐼 = z⊤Wz
z⊤z

splitting on training (tr) and test (te) sets:

𝐼 =
2

∑
𝑖=1

2
∑
𝑗=1

z𝑖
⊤W𝑖,𝑗z𝑗

z⊤z

where 𝑖, 𝑗 are split. These components express the spatial autocorrelation within and between
the training and test sets, where the within cases are block diagonal, and the between are
off-diagonal rectangles, and will be equal only for symmetric W.
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Decomposing 𝐼 - partitioned W
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Decomposing 𝐼

The sum of the components of 𝐼 is as before:

[1] 0.07085727

Running a simple permutation test (over both train and test values - perhaps they should be
permuted separately - 1000 draws) gives pseudo p-values for each of the four components.

trtr trte tetr tete

I 0.02784358 0.01986058 0.01826707 0.004886050

p.value 0.00000000 0.00000000 0.00000000 0.001998002

Obviously, a different split would give a different outcome, but information is flowing between
the test set and the training set for this draw.
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GMM spatial error model

Let’s try fitting a spatial error model by GMM (spatialreg::GMerrorsar (Bivand, Millo, and Piras
2021; Bivand and Piras 2015)) on the training data set, taking the 10 nearest neighbours. The
spatial autocorrelation in the residual is expressed through a spatial error model (SEM):

y = X𝛽 + u, u = 𝜌Wu + 𝜀, (I − 𝜌W)y = (I − 𝜌W)X𝛽 + 𝜀,

where y is an (𝑛 × 1) vector of observations on a response variable taken at each of 𝑛
locations, X is an (𝑛 × 𝑘) matrix of covariates, 𝛽 is a (𝑘 × 1) vector of parameters, u is an
(𝑛 × 1) spatially autocorrelated disturbance vector, 𝜀 is an (𝑛 × 1) vector of independent and
identically distributed disturbances and 𝜌 is a scalar spatial parameter.

If the processes in the covariates and the response match, we should find little difference
between the coefficients of a least squares and a SEM, but very often they diverge, suggesting
that a Hausman test for this condition should be employed (Pace and LeSage 2008). 25



GMM spatial error model

Our outcome measure 𝐼 for the differences between the logarithm of sale price and the
predictions made from the GMM error model fitted on the training set will use 10 nearest
neighbours from the combined training and test sets, so is not quite fair:

[1] 0.0344932
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Prediction

Goulard, Laurent, and Thomas-Agnan (2017), following Cressie (1993), Haining (1990) and Bivand
(2002), describe how predictions may be made for the spatial error model. With new data, it is
most often the case that the values of the dependent variable to be predicted are not known, so
that the best that can be done is to multiply the model matrix X by the estimated coefficients

̂𝛽 as in the case of the linear model.

It is also possible, given that the values of the dependent variable are available in the test set,
to predict using:

X ̂𝛽 + ̂𝜌W(y − X ̂𝛽)

adding in the spatial smooth of the difference between the truth and the estimate. This is what
is done here.
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Decomposing 𝐼 for the GMM spatial error model

The spillover between training and test set differences has not really been muted, but the
training set residual autocorrelation has been muted here:

trtr trte tetr tete

I 0.01053015 0.01129458 0.009836554 0.00283191

p.value 0.08591409 0.00000000 0.000000000 0.05994006

Unfortunately, this spatial error model appears to be rather mis-specified, as the regression
coefficients of the linear and spatial error models diverge substantially, and should not do so
had the model been well-specified. The RMSE is:

[1] 1.782089

The Hausman test reports:

Hausman test = 465.51, df = 266, p-value = 4.535e-13 28



Using subgraphs in the data for splits

The neighour graph may exhibit natural splits, and in this case does divide into 4 subgraphs:

n_comp

1 2 3 4

1763 803 213 151

Using the first subgraph as the training set, and the second as the test set, we can mute the
spillover of information between the two sets predicting from the fitted linear model (for this
definition of neighbours):

trtr trte tetr tete

I 0.08116669 0.000000 0.000000 0.2419233

p.value 0.00000000 0.999001 0.999001 0.0000000
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Subgraphs in Ames

30



Decomposing 𝐼 - partitioned W by subgraphs
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Using subgraphs - spatial error model

If we replace the aspatial linear model with SEM, the residual spatial autocorrelation in the
training set is reduced somewhat, as it also is in the test set, compared to the aspatial model:

trtr trte tetr tete

I 0.04997633 0.000000 0.000000 0.1612236

p.value 0.00000000 0.999001 0.999001 0.0000000

The RMSE for coefficient divergence is:

[1] 0.52692

and the Hausman test:

Hausman test = 412.95, df = 242, p-value = 4.566e-11
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Clustering observations in space

In spatialsample (Mahoney and Silge 2023; Mahoney et al. 2023), sampling methods are provided
to reduce the spillover of information between training and test sets, by creating spatial
clusters using by default kmeans in geographical space:

1 <split [2718/212]> Fold01

2 <split [2342/588]> Fold02

3 <split [2885/45]> Fold03

4 <split [2626/304]> Fold04

5 <split [2682/248]> Fold05

6 <split [2560/370]> Fold06

7 <split [2496/434]> Fold07

8 <split [2611/319]> Fold08

9 <split [2672/258]> Fold09

10 <split [2778/152]> Fold10 33



Clustering observations in space

Using these 10 folds and the aspatial linear model, we see that the decomposed values of 𝐼
between training and test sets are muted:

trtr trte tetr tete

[1,] 0.05464167 1.579147e-04 4.237952e-05 2.645032e-02

[2,] 0.04810282 -2.711008e-04 -1.718197e-04 1.404954e-01

[3,] 0.06057882 1.574742e-05 1.093568e-03 -5.764331e-04

[4,] 0.03130891 2.454023e-04 -2.216083e-04 2.648999e-02

[5,] 0.06402819 4.989880e-04 4.776451e-04 -3.042775e-05

[6,] 0.03860268 6.014617e-04 3.336278e-04 4.305544e-02

[7,] 0.04122980 -1.777223e-04 1.313209e-05 9.350165e-02

[8,] 0.05271585 3.473000e-04 5.994950e-04 6.016557e-02

[9,] 0.04272620 2.293592e-04 6.717165e-04 3.433433e-02

[10,] 0.05783020 5.641163e-07 1.099362e-04 1.604846e-02 34



Clustering observations in space - SEM model

Again using these 10 folds but now with the spatial error model, we see that the decomposed
values of 𝐼 between sets remain muted, but values of 𝐼 in the training set increased:

trtr trte tetr tete

[1,] 0.07418114 1.538558e-04 6.190773e-05 2.507752e-02

[2,] 0.06595565 -3.053954e-04 -1.918806e-04 1.592235e-01

[3,] 0.08456752 2.817248e-05 8.623309e-04 -9.944251e-04

[4,] 0.04687086 2.668496e-04 -1.811872e-04 2.775263e-02

[5,] 0.09077156 5.460821e-04 5.139911e-04 6.738858e-05

[6,] 0.05790232 6.469756e-04 4.368871e-04 4.094779e-02

[7,] 0.05674188 -1.654076e-04 3.019065e-05 7.616135e-02

[8,] 0.07433248 3.480481e-04 5.913326e-04 5.924806e-02

[9,] 0.06327771 1.167824e-04 6.552451e-04 3.454766e-02

[10,] 0.07883773 -2.565112e-06 7.173057e-05 1.619898e-02 35



Clustering observations in space - SEM model

The RMSEs for coefficient divergence are:

[1] 1.5185770 1.3769901 1.4378481 1.5758731 1.5902734 0.9238018 1.2175821

[8] 0.6742634 1.2759280 1.2320067

and the Hausman test p-values:

[1] 1.105893e-12 1.588280e-10 1.443290e-15 1.110223e-16 2.116085e-13

[6] 5.976331e-13 1.295971e-07 4.003353e-12 2.220446e-16 5.613288e-13
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Preliminary conclusions



Preliminary conclusions

• If the data being used in machine learning are spatial, then assessing the models
employed for performance issues associated with unmodelled spatial autocorrelation is
justified, for example using waywiser or similar software.

• It is further relevant to try to use spatially-aware sampling to create training and test data
sets with reduced spillover of information between the sets, for example spatialsample or
utilising subgraphs; the decomposition of 𝐼 used here is only an early prototype.

• It may be worth trying out spatial econometrics models in addition to aspatial models in
workflows, again, more study is needed.

• Note also that the method chosen to represent neighbours may prejudice the exercise, as
the implied neighbour definitions used here may be “unfair” as they include different sets
of neighbours at different stages.
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