Create image for gridded data in SpatialGridDataFrame or SpatialPixelsDataFrame objects.

# S3 method for SpatialGridDataFrame
image(x, attr = 1, xcol = 1, ycol = 2,
        col = heat.colors(12), red=NULL, green=NULL, blue=NULL,
        axes = FALSE, xlim = NULL,
        ylim = NULL, add = FALSE, ..., asp = NA, setParUsrBB=FALSE,
        interpolate = FALSE, angle = 0,
        useRasterImage = !(.Platform$GUI[1] == "Rgui" &&
        getIdentification() == "R Console") && missing(breaks), breaks,
        zlim = range(as.numeric(x[[attr]])[is.finite(x[[attr]])]))
# S3 method for SpatialPixelsDataFrame
image(x, ...)
# S3 method for SpatialPixels
image(x, ...)
# S3 method for SpatialGridDataFrame
contour(x, attr = 1, xcol = 1, ycol = 2,
        col = 1, add = FALSE, xlim = NULL, ylim = NULL, axes = FALSE,
         ..., setParUsrBB = FALSE)
# S3 method for SpatialPixelsDataFrame
contour(x, ...)
as.image.SpatialGridDataFrame(x, xcol = 1, ycol = 2, attr = 1)
image2Grid(im, p4 = as.character(NA), digits=10)

Arguments

x

object of class SpatialGridDataFrame

attr

column of attribute variable; this may be the column name in the data.frame of data (as.data.frame(data)), or a column number

xcol

column number of x-coordinate, in the coordinate matrix

ycol

column number of y-coordinate, in the coordinate matrix

col

a vector of colors

red,green,blue

columns names or numbers given instead of the attr argument when the data represent an image encoded in three colour bands on the 0-255 integer scale; all three columns must be given in this case, and the attribute values will be constructed using function rgb

axes

logical; should coordinate axes be drawn?

xlim

x-axis limits

ylim

y-axis limits

zlim

data limits for plotting the (raster, attribute) values

add

logical; if FALSE, the image is added to the plot layout setup by plot(as(x, "Spatial"),axes=axes,xlim=xlim,ylim=ylim,asp=asp) which sets up axes and plotting region; if TRUE, the image is added to the existing plot.

...

arguments passed to image, see examples

asp

aspect ratio to be used for plot

setParUsrBB

default FALSE, see Spatial-class for further details

useRasterImage

if TRUE, use rasterImage to render the image if available; for legacy rendering set FALSE; should be FALSE on Windows SDI installations

breaks

class breaks for coloured values

interpolate

default FALSE, a logical vector (or scalar) indicating whether to apply linear interpolation to the image when drawing, see rasterImage

angle

default 0, angle of rotation (in degrees, anti-clockwise from positive x-axis, about the bottom-left corner), see rasterImage

im

list with components named x, y, and z, as used for image

p4

CRS object, proj4 string

digits

default 10, number of significant digits to use for checking equal row/column spacing

Value

as.image.SpatialGridDataFrame returns the list with elements x and y, containing the coordinates of the cell centres of a matrix z, containing the attribute values in matrix form as needed by image.

Note

Providing xcol and ycol attributes seems obsolete, and it is for 2D data, but it may provide opportunities for plotting certain slices in 3D data. I haven't given this much thought yet.

filled.contour seems to misinterpret the coordinate values, if we take the image.default manual page as the reference.

See also

image.default, SpatialGridDataFrame-class, levelplot in package lattice. Function image.plot in package fields can be used to make a legend for an image, see an example in https://stat.ethz.ch/pipermail/r-sig-geo/2007-June/002143.html

Examples

data(meuse.grid) coordinates(meuse.grid) = c("x", "y") # promote to SpatialPointsDataFrame gridded(meuse.grid) = TRUE # promote to SpatialGridDataFrame data(meuse) coordinates(meuse) = c("x", "y") image(meuse.grid["dist"], main = "Distance to river Meuse")
points(coordinates(meuse), pch = "+")
image(meuse.grid["dist"], main = "Distance to river Meuse", useRasterImage=TRUE)
points(coordinates(meuse), pch = "+")
# color scale: layout(cbind(1,2), c(4,1),1) image(meuse.grid["dist"]) imageScale(meuse.grid$dist, axis.pos=4, add.axis=FALSE)
axis(4,at=c(0,.2,.4,.8), las=2)
data(Rlogo) d = dim(Rlogo) cellsize = abs(c(gt[2],gt[6])) cells.dim = c(d[1], d[2]) # c(d[2],d[1]) cellcentre.offset = c(x = gt[1] + 0.5 * cellsize[1], y = gt[4] - (d[2] - 0.5) * abs(cellsize[2])) grid = GridTopology(cellcentre.offset, cellsize, cells.dim) df = as.vector(Rlogo[,,1]) for (band in 2:d[3]) df = cbind(df, as.vector(Rlogo[,,band])) df = as.data.frame(df) names(df) = paste("band", 1:d[3], sep="") Rlogo <- SpatialGridDataFrame(grid = grid, data = df) summary(Rlogo)
#> Object of class SpatialGridDataFrame #> Coordinates: #> min max #> x 0 101 #> y -77 0 #> Is projected: NA #> proj4string : [NA] #> Grid attributes: #> cellcentre.offset cellsize cells.dim #> x 0.5 1 101 #> y -76.5 1 77 #> Data attributes: #> band1 band2 band3 #> Min. : 0.0 Min. : 0.0 Min. : 0.0 #> 1st Qu.:131.0 1st Qu.:138.0 1st Qu.:151.0 #> Median :196.0 Median :199.0 Median :215.0 #> Mean :182.3 Mean :185.4 Mean :192.8 #> 3rd Qu.:254.0 3rd Qu.:255.0 3rd Qu.:254.0 #> Max. :255.0 Max. :255.0 Max. :255.0
image(Rlogo, red="band1", green="band2", blue="band3") image(Rlogo, red="band1", green="band2", blue="band3", useRasterImage=FALSE)
is.na(Rlogo$band1) <- Rlogo$band1 == 255 is.na(Rlogo$band2) <- Rlogo$band2 == 255 is.na(Rlogo$band3) <- Rlogo$band3 == 255 Rlogo$i7 <- 7 image(Rlogo, "i7") image(Rlogo, red="band1", green="band2", blue="band3", add=TRUE)