The function fits a Poisson cluster process to point data for a given enclosing polygon and fit parameters

pcp(point.data, poly.data, h0=NULL, expo=0.25, n.int=20)

Arguments

point.data

a points object

poly.data

a polygon enclosing the study region

h0

upper bound of integration in the criterion function

expo

exponent in the criterion function

n.int

number of intervals used to approximate the integral in the criterion function with a sum

Value

The function returns an object as returned by optim, including:

par

The best set of parameters s2 and rho found

value

The value of the fit corresponding to `par'

convergence

`0' indicates successful convergence

References

Diggle, P. J. (1983) Statistical analysis of spatial point patterns, London: Academic Press, pp. 55-57 and 78-81; Bailey, T. C. and Gatrell, A. C. (1995) Interactive spatial data analysis, Harlow: Longman, pp. 106-109.

Author

Giovanni Petris <GPetris@uark.edu>, Roger.Bivand@nhh.no

See also

Examples

data(cardiff)
polymap(cardiff$poly)
pointmap(as.points(cardiff), add=TRUE)
title("Locations of homes of 168 juvenile offenders")

pcp.fit <- pcp(as.points(cardiff), cardiff$poly, h0=30, n.int=30)
pcp.fit
#> $par
#>         s2        rho 
#> 6.16109743 0.01136752 
#> 
#> $value
#> [1] 0.02734823
#> 
#> $counts
#> function gradient 
#>       77       NA 
#> 
#> $convergence
#> [1] 0
#> 
#> $message
#> NULL
#>