pcp.Rd
The function fits a Poisson cluster process to point data for a given enclosing polygon and fit parameters
pcp(point.data, poly.data, h0=NULL, expo=0.25, n.int=20)
a points object
a polygon enclosing the study region
upper bound of integration in the criterion function
exponent in the criterion function
number of intervals used to approximate the integral in the criterion function with a sum
The function returns an object as returned by optim
, including:
The best set of parameters s2 and rho found
The value of the fit corresponding to `par'
`0' indicates successful convergence
Diggle, P. J. (1983) Statistical analysis of spatial point patterns, London: Academic Press, pp. 55-57 and 78-81; Bailey, T. C. and Gatrell, A. C. (1995) Interactive spatial data analysis, Harlow: Longman, pp. 106-109.
data(cardiff)
polymap(cardiff$poly)
pointmap(as.points(cardiff), add=TRUE)
title("Locations of homes of 168 juvenile offenders")
pcp.fit <- pcp(as.points(cardiff), cardiff$poly, h0=30, n.int=30)
pcp.fit
#> $par
#> s2 rho
#> 6.16109743 0.01136752
#>
#> $value
#> [1] 0.02734823
#>
#> $counts
#> function gradient
#> 77 NA
#>
#> $convergence
#> [1] 0
#>
#> $message
#> NULL
#>